SEAT NO.:

[Total No. of Pages : 4]

S.E. MECH/PROD /AUTO ENGINEERING MATHEMATICS - III 2008 PATTERN (Semester - I)

Time: 3 Hours

Max. Marks: 100

Instructions to the candidates:

- 1) Answers to the two sections should be written in separate answer books.
- 2) Answer any three questions from each section.
- 3) Neat diagrams must be drawn wherever necessary.
- 4) Figures to the right side indicate full marks.
- 5) Use of Calculator is allowed.
- 6) Assume Suitable data if necessary

SECTION I

i)
$$(D^2-1)y = e^{-x} \sin^{-x} + \cos^{-x}$$

ii)
$$(D^2 - 4D)y = 2\cosh 2x$$

iii)
$$(D^3 - 3D^2 + 3D - 1)y = e^{2x} \cosh x$$

iv)
$$(\frac{d^2y}{dx^2} + y) = \csc x$$
 (by the method of variation of parameter; where D = $\frac{d}{dx}$

b) Solve:
$$\frac{dx}{dt} + y = \sin t$$
; $\frac{dy}{dt} + 4x = \cos t$ [05]

OR

i)
$$(D^2 - 3D + 2)y = (x^3 + x + 1)$$

ii)
$$(D^2 + 2D + 1)y = xe^{-x}\cos x$$

iii)
$$\frac{dx}{y} = \frac{dy}{-x} = \frac{dz}{2x-3y}$$

iv)
$$(2x+1)^2 \frac{d^2y}{dx^2} + 2(2x+1) \frac{dy}{dx} + 4y = 4 \sin[\log(2x+1)^2]$$

i)
$$F(t) = \begin{cases} (t-1); & t > 1 \\ 0; & t < 1 \end{cases}$$

ii)
$$\int_{0}^{t} t e^{-4t} \sin 3t \ dt$$

iii)
$$\frac{d}{dt}(\frac{sint}{t})$$

b) Solve the following equation by using Laplace Transform [06]
$$\frac{d^2y}{dt^2} + 2\frac{dy}{dt} + y = te^{-t}. \text{ Given }, y(0) = 1, y'(0) = -2$$

c) Find the Fourier transform of

$$F(x) = \begin{cases} -3, & |x| < 1 \\ x, & |x| > 1 \end{cases}$$
. Hence evaluate $\int_0^\infty \frac{\sin \lambda}{\lambda} d\lambda$. Also deduce that $\int_0^\infty \frac{\sin \lambda}{\lambda} d\lambda$ [06]

Find Inverse Laplace Transform (Any two) Q4) a)

[80]

i)
$$\frac{2s+1}{(s^2+s+1)^2}$$

- $\frac{1}{s}\log(\frac{s^2+a^2}{s^2+I^2})$
- $\frac{1}{s^2(s+1)}$

b) Find Fourier Sine transform of
$$\frac{e^{-ax}}{x}$$
 [04]

Solve the integral equation
$$\int_0^\infty f(x) \sin \lambda x \, dx = \begin{cases} 2 - x, & 0 \le \lambda \le 2 \\ 0, & \lambda > 2 \end{cases}$$
 [05]

- If $\frac{\partial^2 y}{\partial r^2} = C^2 \frac{\partial^2 y}{\partial r^2}$ represents the vibrations of a string of length *l* fixed at both Q5) [08]ends, find the solution with boundary conditions.
 - $y(t, 0) = 0; \forall t$ i)
 - ii) y(l, t) = 0; $\forall t$
 - iii) $\left(\frac{\partial y}{\partial t}\right)_{t=0} = 0; \ \forall \ t$

iv)
$$Y(x, 0) = k(lx - x^2)$$
, for $\forall t$, $0 \le x \le l$
b) Solve: $\frac{\partial u}{\partial t} = C^2 \frac{\partial^2 u}{\partial x^2}$ if [08]

- u is finite for all t
 - $u(0, t) = 0 ; \forall t$ ii)
 - $u(l,t) = 0 \quad ; \forall t$ iii)
 - $u(x, 0) = u_0$, for $0 \le x \le l$ where l being the length of the bar

OR

- Q6) An infinitely long uniform metal plate is enclosed between the lines x = 0 and x = 0a) [08] 1 for y > 0. The temperature is being zero along the edges x = 0, x = 1 and at y = 0 ∞ . If the edge y = 0 is kept at a constant temperature x (1-x). Find the temperature distribution u(x,y)
 - Solve using Fourier transform: b) [80] $\frac{\partial u}{\partial t} = k \frac{\partial^2 u}{\partial x^2}$; $0 < x < \infty$, t > 0Subject to the boundary condition U(0, t) = f(t); t > 0 and the initial condition u(x, 0) = 0, x > 0

SECTION II

Q7) The first four moments about the point 3.5 of a distribution are 0.058, 0.452, a) [06] 0.0823, and 0.05. Calculate the moments about the mean. Also calculate coefficient of kurtosis and skewness

- b) Given, n=6, $\sum (x_i 18.5) = -3$; $\sum (y_i 50) = 20$; $\sum (x_i 18.5)^2 = 19$; $\sum (y_i 50)^2 = 850$; $\sum (x_i 18.5)(y_i 50) = -120$. Calculate the coefficient of correlation.
- In a quality control department of tube manufacturing factory, 10 rubber tubes are randomly selected from each day's production for inspection. If not more than 1 of the 10 tubes is found to be defective, the production lot is approved, and otherwise it is rejected. Find the probability of the rejection of a day's production lot if the true proportion of defectives in the lot is 0.3

OR

- Q8) a) In a certain factory turning out razor blades. There is a small chance of $\frac{1}{500}$ for. Use Poisson distribution to calculate the approximate number of packets containing no defective and two defective blades in a consignment of 10, any blade to be defective. The blades are supplied in a packet of 10,000 packets
 - b) Assuming that the diameter of 1000 brass plugs then consecutively from machine, form a normal distribution mean 0.7515 cm and standard deviation 0.002 cm. How many of the plugs are likely to be approved if the acceptable diameter is 0.752 ± 0.004 cm.

Given: A(2.25) = 0.4878A(1.75) = 0.4599

c) Calculate the standard deviation for the following frequency distribution.

Decide whether arithmetic mean is good average?

Decide whether artifulette mean is good at orage.						
Wages in	0-10	10-20	20-30	30-40	40-50	50-60
Rupees						
earned per						
day						
Number of	5	9	15	12	10	3
labors						

- Q9) a) If $\overline{r} \cdot \frac{\overline{r}}{dt} = 0$ then prove that \overline{r} have constant magnitude.
 - b) Find the directional derivate of $\phi = x^2 yz + 4xz^2$ at the point (1,-2,-1) in the direction of vector $2\overline{i} \overline{i} 2\overline{k}$
 - c) Prove that
 - i) $\nabla^2(r^2 \log r = \frac{\sigma}{r^2})$
 - ii) If \overline{u} and \overline{v} are irrotional vectors then Prove that \overline{u} and \overline{v} are solinoidal.

OR

- Q10) a) Show that $\overline{F} = (y\sin z \sin x)\overline{i} + (x\sin z + 2yz)\overline{j} + (xy\cos z + y^2)\overline{k}$ is [06] irrotional. Find the scalar potential ϕ such that $\overline{F} = \nabla \phi$.
 - b) If the directional derivative of $\phi = axy + byz + czx$ at (1,1,1) as maximum [05] magnitude 8 in a direction parallel to y –axis, find the values of a,b,c.
 - c) A curve is given by the equation : $x = t^2 + 15$; y = 4t 3; $z = 2t^3 6t$. Find [06] the angle between tangents at t = 2 and t = 3.

[05]

[05]

[06]

[05]

[04]

[80]

a) Find the work done in moving a particle from
$$(0,0,0)$$
 to $(1,1,1)$ in a force field $\overline{F} = yz \overline{i} + xz \overline{j} + xy \overline{k}$

Q11

Q12)

- Evaluate $\oint_{C} \overline{F} \cdot d\overline{r}$ by using Stoke's theorem for the surface of paraboliod z= 9- (x^2+y^2) above the plane z=0; where, $\overline{F} = (x^2+y-4)\overline{i}+3xy\overline{j}+(2yz+z^2)\overline{k}$
- [06]Use Divergence's theorem to evaluate $\iint_{\mathbb{R}} \overline{F} \cdot \hat{n} \, ds$ where S is the closed surface of the cylinder $x^2+y^2=4$; z=0, z=3 where, $\overline{F}=4x\overline{i}-2y^2\overline{j}+x^2\overline{k}$ OR

[05]

[06]

- Evaluate $\int_C (\sin y y^3) dx + (xy^2 + x \cos y) dy$ by Green's theorem where C is [05] the circle $x^2 + v^2 = a^2$
- By using divergence theorem, evaluate $\iint_{S} (x^2y^3\overline{i} + z^2x^3\overline{j} + x^2y^3)\overline{k}) \cdot \overline{ds}$ where [06]
- S is the surface of the sphere $x^2 + y^2 + z^2 = a^2$ [06]Evaluate $\iint_{S} (\nabla \times \overline{F}) . d\overline{s}$ where $\overline{F} = (x^3 - y^3)\overline{i} - xyz\overline{j} + y^3\overline{k}$ and S is the surface $x^2 + 4y^2 + z^2 - 2x = 4$ above the plane x = 0.