SEAT NO.:	
-----------	--

[Total No. of Pages: 3]

S.E. CIVIL ENGINEERING

Engineering Mathematics - III (COURSE - 2012)

Time: 2 Hours

Max. Marks: 50

Instructions to the candidates:

- 1) Answers Q1 or Q2, Q3 or Q4, Q5 or Q6 and Q7 or Q8.
- 2) Neat diagrams must be drawn wherever necessary.
- 3) Figures to the right side indicate full marks.
- 4) Use of Non programmable calculator is allowed.
- 5) Assume Suitable data if necessary.

i)
$$(D^3 - 3D^2 + 4D - 2)$$
 $y = e^x + \cos x$

ii) (
$$D^2$$
- $4D + 4$) $y = 8x^2 e^{2x} \sin 2x$

iii) [
$$(x+1)^2 D^2 + (X+1) D$$
] $y = (2x+3) (2X+4)$

$$D = \frac{d}{dx}$$

b) Solve
$$28x + 4y - z = 32$$

$$2x + 17y + 4z = 35$$

$$x + 3y + 10z = 24$$
 by Gauss Seidel method

OR

Q2) a) A light horizontal strut AB of length L is freely pinned at A & B is under the action of equal and opposite compressive forces P at each of its ends and carries a load W at its centre. Find the deflection.

[Hint:
$$EI\frac{d^2y}{dx^2} = -\frac{W}{2}x - Py$$
, $x = 0$, $y = 0$, $x = \frac{L}{2}$, $\frac{dy}{dx} = 0$, $\frac{P}{EI} = n^2$]

b) Apply fourth order Runge - Kutta method to $\frac{dy}{dx} = 3x + \frac{y}{2}$, y(0) = 1 [04]

to determine y (0.1) taking h = 0.1

c) Solve
$$4X_1 + 2X_2 + 14X_3 = 14$$

$$2X_1 + 17X_2 - 5X_3 = -101$$

$$14X_1 - 5X_2 + 83X_3 = 155$$

by Cholesky's method

Q3) a) Find the coefficient of correlation of the following table

[04]

X	5	7	9	11
у	8	4	16	12

b) If the probability that an individual suffers a bad reaction from a certain injection [04] is 0.002, determine the probability that out of 1000 individuals, more than two individuals will suffer a bad reaction.

c)	Find the directional derivative of $\Phi = xy^2 + yz^3$ at (2, 1, 1) in the direction	[04]
	normal to the surface $x^2y + y^2x + yz^2 = 3$ at (1, 1, 1).	

OR

Q4)	a)	Calculate first three moments about mean for the following data
-----	----	---

X	61	64	67	70	73
f	5	18	42	27	8

b) Show that (any one)
i)
$$\nabla \cdot \left(r \nabla \frac{1}{r^3} \right) = \frac{3}{r^4}$$

ii) $\overline{F} = (x + 3y)i + (y - 2z)j + (az + x)k$ is solenoidal. Find value of **a**.

c)
$$\overline{F} = (y e^x + e^z)i + (z e^y + e^x)j + (x e^z + e^y)k$$
 [04] is irrotational and find their scalar potential

Q5) a) Find the work done by the force $\overline{F} = 3x^2\hat{\imath} + (2xz - y)\hat{\jmath} + 2\hat{k}$ along the curve [04] $x^2 = 4y$, $3x^3 = 8z$ from x = 0 to x = z.

b) Apply stokes theorem to calculate $\int_c 4y \, dx + 2z \, dy + 6y \, dz$, where c is the curve at intersection of $x^2 + y^2 + z^2 = 6z \& z = (x+3)$

Use divergence theorem to evaluate $\iint_S (x \, dy \, dz + y \, dz \, dx + z \, dx \, dy)$ over the surface of a sphere of radius a.

OR

Q6) a) Use Green's theorem to evaluate [04] $\int_{c} \overline{F} \cdot d\overline{r} \text{ where } \overline{F} = y^{3} \hat{\imath} - x^{3} \hat{\jmath} \text{ and 'c' is the circle } x^{2} + y^{2} = a^{2}, z=0$

b) Use Divergence theorem to evaluate $\iint_{S} \overline{F} \cdot d\overline{s}$ where $\overline{F} = 4x\hat{\imath} - 2y^{2}\hat{\jmath} + z^{2}\hat{k}$ [05] and s is surface bounding the region $x^{2}+y^{2}=4$, z=0 and z=3.

Evaluate $\iint_{S} (\nabla * \overline{F}) \cdot \hat{n} \, ds$ where s is the curved surface of the parabolaid [04] $x^2 + y^2 = 2z$, bounded by the plane z = 2, where $\overline{F} = 3(x - y)\hat{i} + 2xz\hat{j} + xy\hat{k}$

Q7) a) A string of length L is stretched and fastened to two ends. Motion is started by displacing the string in the form $u(x) = a \sin(\frac{\pi x}{l})$ from which it is released at t=0. Find the displacement 'u' at any time 't', if it satisfies the equation $\frac{\partial^2 y}{\partial t^2} = e^2 \frac{\partial^2 y}{\partial x^2}$

b) Solve
$$\frac{\partial u}{\partial t} = a^2 \frac{\partial^2 u}{\partial x^2}$$
 if [06]

i) $u(x, \infty)$ is finite

ii)
$$u(0, t) = 0$$

iii)
$$u(l, t) = 0$$

[04]

iv)
$$u(x, 0) = x$$
, $0 < x < 1$

OR

- Q8) a) An infinitely long plane uniform plate is bounded by two parallel edges in the y direction and an end at right angles to them. The breadth of the plate is π . The end is maintained at temperature u_0 at all points and other edges at zero temperature. Find steady state temperature u(x, y). if it satisfies $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$
 - b) Solve $\frac{\partial u}{\partial t} = k \frac{\partial^2 u}{\partial x^2}$ if
 - i) u(x, t) is bounded
 - ii) u(0, t) = 0
 - iii) u(l, t) = 0
 - iv) $u(x, 0) = \frac{u_0 x}{l}, 0 < x < l$

[06]

[07]

9