Total No of Questions: [12]

SEAT NO. :

[Total No. of Pages : 2]

T.E. (Computer) 2008 Course Digital Signal Processing

Time: 3 Hours

041

Instructions to the candidates:

- 1) Answers to the two sections should be written in separate answer books.
- 2) Neat diagrams must be drawn wherever necessary.
- 3) Figures to the right side indicate full marks.
- 4) Use of Calculator is allowed.

line anites and to

5) Assume Suitable data if necessary

SECTION I

Q1)	a)	State infearity and time invariant properties of a D1 system and test it for $y(n) = x(n) \cos w_0 n$	[8]
	b)	With illustrations, explain shifting, folding and time scaling operations on discrete- time signals.	[8]
		OR	
Q2)	a)	State and explain sampling theorem.	[8]
	b)	Define linear convolution. Explain in brief different properties of convolution.	[8]
Q3)	a)	Explain how DFT can be used for linear filtering. How N-pt. circular convolution can be used to obtain linear convolution?	[12]
	b)	Define a Fourier Transform (FT). State any four properties of FT.	[6]
		OR	
Q4)	a)	Find the FT and DFT of the sequence $x(n) = 0.5^n u(n)$ $0 \le n \le 3$.	[8]
	b)	Compare N point DFT with FT. What is the significance of N in DFT? Why it is necessary to have $N \ge L$ where L: length of a DT signal.	[10]
Q5)	a)	Why z transform need to be specified only with ROC? What are the all possible ROCs for finite and infinite duration sequences?	[8]
	b)	Compare DIT FFT and DIF FFT algorithm.	[4]
	c)	Determine the z transform of following sequences:	
		i) $x_1(n) = \partial(n-k)$	[4]
		ii) $x_2(n) = \partial(n+k)$	
		OR	
Q6)	a)	Determine the inverse z-transform of the following function	[10]
		$X(z) = \frac{1}{1 - 1.5z^{-1} + 0.5z^{-2}}$ For following ROC,	
		i) ROC: $ z > 1$ ii) ROC: $ z < 0.5$	
		iii) ROC: $0.5 < z < 1$	
	b)	Draw the basic butterfly structure and obtain the computational complexity of DIT	[6]
		FFT algorithm.	[0]

Max. Marks : 100

ons t

		SECTION – II	
Q7)	a)	Explain the Geometric Construction method to obtain the phase and frequency response of the system.	[10]
	b)	Define and obtain system function H(z) from N order general difference equation Express it for i) All zero system ii) All pole system	[6]
		OR	
Q8)	a)	 An LTI system is given by y(n) = y(n-1) + y(n-2) + x(n-1), i) Find the system function H(z) ii) Draw a pole zero plot iii) Calculate h(n) if possible. 	[10]
Q9)	b) a)	Justify: All the poles of H(z) of a causal and stable system are inside the unit circle. Explain Gibbs phenomenon observed in FIR filter design. What are the desirable features of window functions to improve frequency response?	[6] [8]
	b)	State the transformation formula used in BLT method to design IIR filter. Obtain the relation showing the frequency warping effect and show it graphically. OR	[8]
Q10)	a)	What is the use of windowing? Define different types of window function. Why Kaiser window is commonly used for FIR filter design?	[10]
	b)	Compare: Analog filter and Digital filter	[6]
Q11)	a)	List the important functions of the following: i) Data Address Generators(DAGs) ii) Program sequencer iii) Barrel Shifter	[6]
	b)	A system is describe by H(z) is given by H(z) = $3 + \frac{4z}{z - \frac{1}{2}} - \frac{2}{z - \frac{1}{4}}$	[12]
		 i) Does H(z) represent FIR or IIR filter, why? ii) Obtain and draw direct form –I, direct form-II of IIR filter OR 	
Q12)	a) b)	Explain in brief different type of internal buses present in ADSP 21xx processor. Realize a linear phase FIR filter structure having impulse response, $h(n) = \delta(n) + \frac{1}{2} \delta(n-1) - \frac{1}{4} \delta(n-2) + \frac{1}{2} \delta(n-3) + \delta(n-4).$	[10] [8]