

Seat		
No.		

T.E. (Computer) (Semester - I) Examination, 2014 THEORY OF COMPUTATION (2008 Course)

Time: 3 Hours Max. Marks: 100

Instructions:

- 1) Answers to the two Sections should be written in separate answer
- 2) Answer any three questions from each Section.
- 3) Neat diagrams must be drawn wherever necessary.
- 4) Figures to the right side indicate full marks.
- 5) Use of calculator is allowed.
- 6) Assume suitable data if necessary.

SECTION - I

- 1. a) Define the following formally with example.
- - i) Alphabet
 - ii) Non deterministic finite automata
 - iii) Deterministic finite automata.
 - b) An NFA with states 1-5 and input alphabet {a, b} has following transition table :

6

6

q	δ(q, a)	δ(q, b)	
1	{1, 2}	{1}	
2	{3}	{3}	
3	{4}	{4}	
4	{5}	Φ	
5	Φ	{5}	

- i) Draw transition diagram
- ii) Calculate δ*(1, ab)
- iii) Calculate δ*(1, abaab).
- c) Give the Mealy and Moore machine for the following processes. "For input from (0+1)*, if input ends in 101, output x, if input ends in 110, output y; otherwise output z".

OR

2. a) Define the Moore and Mealy machine and how the equivalence of Moore and Mealy machines can be established with example.

6

6

	b)	Construct NFA and DFA for accepting all possible string of zeroes and ones not containing 101 as a substring.	8
	c)	Differentiate between NFA and DFA.	4
3.	a)	Let L be any subset of 0*. Prove that L is regular.	4
	b)	For each of the following draw DFA of following regular expression : i) (11+00)* ii) (111+100)*0.	8
c)	Sh	ow that P*(QP*)*=(P+Q)*. OR	4
4.	a)	Write R.E. for the following:	6
		i) $\Sigma = (0, 1)$ odd number of 1's in strings.	
		ii) $\Sigma = (0, 1)$ Triple 0 must never appear in strings.	6
	b)	Explain following application of R.E. i) GREP utilities of unix. ii) Finding pattern in text.	6
	c)	Write a short note on pumping lemma.	4
5.	a)	Give the CFG for the following languages : i) (011+1)*(01)* ii) 0 ⁱ 1 ^{j+k} 0 ^k .	8
	b)	Give an ambiguous grammar for if then else statement and then re-write an equivalent unambiguous grammar. OR	8
6.	a)	Give CFG for set of odd length settings in {0, 1}* with middle symbol '1'.	4
	b)	Convert following grammar to CNF. S → ABA	6
		$A \rightarrow aA \mid \epsilon$	
		$B \rightarrow bB \mid \epsilon$	
	c)	Construct the right linear grammar corresponding to the regular expression. R = (0 + 1)1 * (1 + (01)*)	6
		SECTION - II	
7.	a)	Construct the PDA and then its equivalent CFG for the language L as given below :	16
		$L = \{ X_C X^r \mid X \in \{a, b\}^* \text{ and string } X^r \text{ is the reverse of string } X \}$	
b)	Ju	stify with suitable example the following statement :	2
	Tv	vo-stack PDA is more powerful than one-stack PDA.	

ii) Post Correspondence Problem.

8. a) Convert the Pushdown Automata (PDA) with the following moves into a Context Free Grammar (CFG): 12 $\delta(q_0, a, Z_0) = \{(q_0, a, Z_0)\}\$ $\delta(q_0, a, a) = \{(q_0, aa)\}$ $\delta(q_0, b, a) = \{(q_1, \epsilon)\}$ $\delta(q_1, b, a) = \{(q_1, \epsilon)\}$ $\delta(q_0, \epsilon, Z_0) = \{(q_1, \epsilon)\}$ b) Design a PDA for the following grammar: 6 S->aSb bSa SS ^ Is the resultant PDA deterministic or non-deterministic? Justify your answer. 9. a) Design Turing Machines for the following languages: 14 i) L = {x | x € {0, 1}* such that x is an even or odd palindrome string} ii) L = {x | x X ({a, b}* having strings equal number of 'a's and 'b's}. b) What are the limitations of Turing Machine. 2 OR 10. a) Design a TM to copy a string over {a, b}*. 8 b) Write short notes on : 8 i) TM and halting problem ii) Post machines. a) Show that if L1 and L2 are recursive languages, then L1 ∪ L2 and L1 ∩ L2 are also recursive. 8 b) Show that both P and NP are closed under the operations of union, intersection. concatenation and Kleene's closure. 8 OR a) Define and explain Recursive and Recursively Enumerable Languages. 8 b) Write short notes on : 8 i) Undecidability

-3- '