17

Total No. of Questions—12]

[Total No. of Printed Pages-4+2

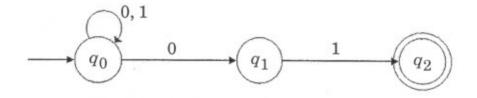
Seat	
No.	

T.E. (Information Technology) (I Sem.) EXAMINATION, 2014

THEORY OF COMPUTATION

(2008 PATTERN)

Time: Three Hours


Maximum Marks: 100

- N.B. :— (i) Answers to the two Sections should be written in separate answer-books.
 - (ii) Answer any three questions from each Section.
 - (iii) Neat diagrams must be drawn wherever necessary.
 - (iv) Figures to the right indicate full marks.
 - (v) Assume suitable data, if necessary.

SECTION I

- 1. (a) Design a FSM to check given decimal number is divisible by
 4 or not. [8]
 - (b) Prove that: [8]
 - (i) (111*)* = (11 + 111)*
 - (ii) (0*1*)* = (0 + 1)*

- 2. (a) Describe in simple english the language defined by the following regular expressions: [8]
 - (i) $(a + b)^*$ $aa(a + b)^{**}$
 - (ii) (b + ba)*
 - (iii) a(a + b)*b
 - (iv) a + b*c+
 - (b) Construct RE by using Arden's Theorem for given DFA. [8]

- 3. (a) Construct NFA for given RE $(a + b)^*$ (aa + bb) and find equivalent DFA. [8]
 - (b) Construct Moore and convert it to Mealy Machine for 2's complement of any binary number. [8]

4. (a) The transition table of a NFA is given below. Construct a DFA equivalent to it. [8]

 δ_{NFA} is

	0	1	2
q_0	q_1, q_4	q_4	q_2, q_3
q_1	_	q_4	0.
q_2		_	q_2 , q_3
q_3	_	q_4	_
q_4	_	_	_

(b) (i) Compare NFA and DFA

[8]

- (ii) Compare Moore and Mealy machine
- (iii) Limitations of FSM.
- 5. (a) Find CNF for the given CFG : [8] $S \rightarrow 0S1 \ S | 1S0S | \epsilon$
 - (b) Prove that the following grammar is ambiguous and obtain unambiguous grammar. Consider w = ibtibtaea. [10]

 $S \rightarrow iCtS$

 $S \rightarrow iCtSeS$

 $C \rightarrow b$,

 $S \rightarrow a$

6.	(a)	Find CFL defined by the following CFG:	[8]
		(i) All binary strings with equal no. of a 's and b 's.	
		(ii) All binary strings with no. of a's are even.	
	(b)	Simplify the following Grammar:	[10]
		$S \rightarrow Aa bS \epsilon$	
		$A \rightarrow aA bB \epsilon$	
		$B \rightarrow aA bc \epsilon$	
		$C \rightarrow aC bc$	

SECTION II

- 7. (a) State and explain Pumping Lemma for CFLs. [6]
 - (b) If L_1 and L_2 are context-free languages over an alphabet Σ , then :

 $L_1 \cup L_2$,

 $L_1 \cdot L_2$

and L* are also CFLs.

8.	(a)	Convert the following right linear grammar to left li	near
		grammar :	[8]
		$S \rightarrow 0A \mid 1B$	
		$A \rightarrow 0C \mid 1A \mid 0$	
		$B \rightarrow 1B 1A 1$	
		$C \rightarrow 0 \mid 0A$	
	(b)	Construct FA for the following grammar:	[8]
		$S \rightarrow Ab \mid ab$	
		$A \rightarrow Ab \mid Bb$	
		$B \rightarrow aB \mid a$	
9.	(a)	Design a PDA to accept the language :	[8]
		$L = \{a^n b^n \mid n >= 0\}$	
	(b)	Construct a PDA that accepts the language generated by	the
		following grammar:	[8]
		$S \rightarrow aA$	
		$A \rightarrow aABc \mid bB \mid a$	

 ${\rm B} \ \to \ b$

- 10. (a) Construct the PM that accepts the language : [8] $L = \{a^nb^n | m, n >= 1\}$
 - (b) Construct the PDA that accepts the language : [8] $L = \{a^n b^m c^n \, | \, m, \ n \ >= \ 1\}$
- 11. (a) Construct TM to calculate a b where b > 0 and a, b both are Unary Numbers. [10]
 - (b) Construct TM to replace 110 by 001 in any input binary strings. [8]

Or

12. (a) Write short notes on:

[10]

- (i) Multi Tape TM
- (ii) Universal TM.
- (b) Construct TM for addition of two unary numbers. [8]