Tota	Total No of Questions: [12]				SEAT NO. :						
									[]	Cotal No. of Page	es : 2
T.E	. 200)8 (Compi	uter Or	riented	Nun	nerica	l Me	thods)	(Su	b.Code:302	045
	T.E.(Mechanic	al/Au	tomobil	le En	ngineer	ring)	Examir	iatio	on, May 2014	4
				(S	eme	ster - 1	II)				
	: 3 H									Max. Marks	:1
		to the candid									
		vers to the two					arate d	inswer bo	oks.		
2)		ver any three of									
3) 4)		diagrams mu res to the righ				•					
5)	0	ires to the right side indicate full marks. of Calculator is allowed.									
6)		me Suitable d									
					SEC	ΓΙΟΝ Ι					
Q1)	a)	Vanderwal equation for real gases is given by									[
		$(p + a/v^2) (v - b) = RT$ where $p = Pressure = 1 N/mm^2 R =$									
		Gas Constant = 0.082 KJ/Kg K, a = Constant = 3.82, b = Constant =									
		0.06, v = Volume at pressure, T = Temperature in Kelvin find volume at									
		300 K Assume initial guess volume $20 m^3/kg$.									
	b)	Draw flow c	hart for Si	impson's 3							[
		OR 1.2 2mg dg dg /									r r
Q2)	a)	Use Trapezoidal Rule to evaluate $\int_0^1 \int_1^2 \frac{2xy dx dy}{(1+x^2)(1+y^2)}$] [
	(h)										E
	b)	Draw flow chart for solution of roots of equation using successive approximation method								[
Q3)	a)	Find the distance moved by a particle and its acceleration at the end of 4 seconds, if								[1	
		the time verses velocity data is as follows.								L	
		t:				1		3		4	
						1					
		v:		21		15		12		10	
	b)	Draw flow c	hart for ca	alculation			ton-Ra	aphson Me	ethod		[
04)		Find f(0 5)	Lloing II-	mito's Tet		OR					Г
Q4)	a)	Find f(-0.5)		mine s int	1	11011	1		_		[]
		X	-1		0		1				
		f(x)	1		1		3				
					-				_		
		$\int \mathbf{f}'(\mathbf{x})$	-5		1		7				
	b)	What are cul	bic splines	s? Explain	the te	erms Inte	rpolati	on'. 'Extr	apola	tion'&'Inverse	Γ
		interpolation					I T T T T T	,	1		
Q.5)	a)	Using Gauss Seidel iterative method to solve the following system of simultaneous								[
		equations $9x + 4y + z = -17$, $x - 2y - 6z = 14$, $x + 6y = 4$ perform four									
		iteration									
	b)	Draw flowchart of Thomas algorithm] [
		OR									

	2y + z = 18 and $x + 4y - 2z = 12$ correct up to 3 decimal places, using Gauss elimination method with partial pivoting										
	b)	Draw a flowchart for Gauss- Seidal method with partial pivoting									
	SECTION II										
07)											
Q7)	a)	i) Error Propagations									
		ii) Round off errors									
		iii) Trucation errors									
		· · · ·	olute error	15							
	b)			hers(Nu) an	d Revnolds	numbers (Re) found		[8]		
	0)	 The value of Nusselt numbers(Nu) and Reynolds numbers (Re) found experimentally are given below. If the relation between Nu and Re is of type Nu=a* Re^b find the value of a and b for the given values of Nu and Re 									
		Nu	3000	4000	5000	6000	7000				
		Re	14.3575	16.6517	16.7353	17.6762	18.5128				
			1 1100 10	1010017	10110000	1110102	10.0120				
					OR						
Q8)	a)	a) Following data refers to the load lifted and corresponding force applied in a pulley system. If the load lifted and effort required are related by the equation effort=a(load lifted)+b. where a and b are constants evaluate a and b by linear curve fitting)									
		Load Lifted in	10		15	20	25	30	[8]		
		KN	10		15	20	25	30			
		Tree at any line									
		Effort applied in KN	0.75	0	.935	1.1	1.2	1.3			
	b)	Draw flow cha	rt to fit eq	uation y=ax ^t)				[8]		
Q9)	a)	Using Runge-Kutta method of fourth order, solve for y at $x = 1.2, 1.4$ form									
		$\frac{dy}{dx} = \frac{2xy + e^x}{x^2 + xe^x} g$	ivens $x_0 =$	1 y ₀ =0							
	b)	$dx x^2 + xe^x C$ Draw a flow-c			's method				[8]		
	0)	Diaw a now c			OR				[0		
Q10)	a)	G 1 (1 1:00	· 1	, dy		<u> </u>	0.2.11.	D	[8]		
Q10)	<i>a)</i>	Solve the diffe					c = 0.3 Using	g Runge-	10		
		Kutta method			tial value x=	=y=0, z=1			50		
011	b)	Draw flow cha			2	.1		0	[8		
Q11	a)	Solve the equa						= 0 =	[10		
	1)	y, x = 3 = y v							го		
	b)	Draw a flow-c	nart for so	iution of ID		eat conductio	n equation		[8		
012					OR du	$1 \partial^2 u$	8		[10		
Q12	a)	Solve using Crank-Nicolson's method, solve $\frac{\partial u}{\partial t} = \frac{1}{16} \frac{\partial^2 u}{\partial x^2}$, $0 < x < 1$, $t > 0$									
		0 given that $u(x, 0) = 0$, $u(0, t) = 0$, $u = (1, t) = 50t$ Compute u for two steps									
		in t direction taking $h=1/4 \& \lambda=1$									
	b)	Draw a flow-chart for solution of wave equation									