SEAT NO.:	
OCAL NU.:	
~	

[Total No. of Pages: 3]

T.E. 2008 (Fluid Mechanics II)

(Semester - I)

Time	: 3 He	ours Max. Marks	s : 100
Instru	ctions 1	to the candidates:	
1)	Answe	ers to the two sections should be written in separate answer books.	
		diagrams must be drawn wherever necessary.	
3)		es to the right side indicate full marks.	
4)		f Calculator is allowed.	
		ne Suitable data if necessary	
1		SECTION I	
Q1)	a)	Define streamline body and bluff body. Give the classification of drag forces.	[8]
	b)	A kite of dimensions 0.85x0.85m and weighing 6N is maintained in air at an	[10]
		angle of 9° to the horizontal. The string attached to kite makes an angle of 50° to	[10]
		the horizontal. If the drag and lift coefficients are 0.6 and 0.8 respectively,	
		determine the wind speed and tension in the string. Density of air is 1.2kg/m ³ .	
		OR	
Q2)	a)		[6]
(2)	a)	Discuss surge tank in relation with following points i) Purpose ii) Location iii) Types	[6]
	b)	Write a note on Magnus effect.	[4]
	c)		[4]
	c)	Derive an expression for the time required to empty a hemispherical tank through an orifice situated at the base of the tank. Consider no inflow into the tank.	[8]
Q3)	a)	In case of force on moving flat plate in the jet direction find the rate of work	[8]
(2)	4,	done. Also show that the efficiency is $2/V^3$.	[o]
	b)	A jet of 3cm in diameter having velocity of 25 m/sec strikes tangentially at one	[8]
	0)	edge on a wheel that deflects the jet through an angle of 120°. What thrust will be	[0]
		developed on the vane when	
		i) The axis of symmetry of the yane is horizontal	

ii) The tangent at the inlet tip is horizontal.

<i>2</i> 4)	a)	The impeller of a centrifugal pump is of 25cm diameter and 5cm width at the	[8]
	a)	periphery. It has blades whose tip angles incline backwards 55° from the radius.	[o]
		The impeller rotates at 1200rpm when it delivers a flow of 20 m ³ /min. If the	
		pump is designed to admit radially calculate	
		i) Direction and speed of water as it leaves the impeller	
		ii)Torque exerted by the impeller on water	
		iii) Shaft power required.	
		Assume mechanical efficiency=95%, hydraulic efficiency=75%	
	b)	Write notes on	[4]
		i)Classification of centrifugal pumps	
		ii) Net positive Suction Head (NPSH)	[4]
25)	a)	Write short notes on	[4]
		i) Types of draft tube	
		ii) Derivation for the unit speed of a turbine.	[4]
			[-1]
	b)	It is required to produce a total shaft output of 15MW by installing a number of	[8]
		single jet pelton wheels of specific speed 37.Determine the number of pelton	
		wheels to be used and the jet diameter with the following related data: net	
		available head=270m, wheel speed =600rpm, ratio of bucket to jet speed=0.4,	
		overall efficiency of wheel=86%, for nozzle, C _d =0.92 and K _v =0.97	
		OR	
Q6)	a)	What is a reaction turbine? Give the detailed classification of reaction turbine.	[8]
	b)		[8]
	"	An hydroelectric generating plant has 4 similar turbines of total	[0]
		An hydroelectric generating plant has 4 similar turbines of total	[6]
		output260MW.Each turbine runs at 110 rpm under a head of 50m, and has an	[0]
		output260MW.Each turbine runs at 110 rpm under a head of 50m, and has an efficiency of 88%.If the model of these turbines is to be tested in a flume with	[0]
		output260MW.Each turbine runs at 110 rpm under a head of 50m, and has an efficiency of 88%.If the model of these turbines is to be tested in a flume with discharge of 350lps under a head of 4.5m, determine the scale ratio of the model.	[0]
		output260MW.Each turbine runs at 110 rpm under a head of 50m, and has an efficiency of 88%.If the model of these turbines is to be tested in a flume with	[0]
		output260MW.Each turbine runs at 110 rpm under a head of 50m, and has an efficiency of 88%.If the model of these turbines is to be tested in a flume with discharge of 350lps under a head of 4.5m, determine the scale ratio of the model.	[0]
Q7)	a)	output260MW.Each turbine runs at 110 rpm under a head of 50m, and has an efficiency of 88%.If the model of these turbines is to be tested in a flume with discharge of 350lps under a head of 4.5m, determine the scale ratio of the model. Also calculate the model speed and power results expected from the model.	
Q7)		output260MW.Each turbine runs at 110 rpm under a head of 50m, and has an efficiency of 88%. If the model of these turbines is to be tested in a flume with discharge of 350lps under a head of 4.5m, determine the scale ratio of the model. Also calculate the model speed and power results expected from the model. SECTION II	[6]
Q7)	a)	output260MW.Each turbine runs at 110 rpm under a head of 50m, and has an efficiency of 88%. If the model of these turbines is to be tested in a flume with discharge of 350lps under a head of 4.5m, determine the scale ratio of the model. Also calculate the model speed and power results expected from the model. SECTION II Write a note on velocity distribution in open channel flow.	[6]
Q7)	a) b)	output260MW.Each turbine runs at 110 rpm under a head of 50m, and has an efficiency of 88%. If the model of these turbines is to be tested in a flume with discharge of 350lps under a head of 4.5m, determine the scale ratio of the model. Also calculate the model speed and power results expected from the model. SECTION II Write a note on velocity distribution in open channel flow. Explain how the flow through open channel is different from that through a pipe.	[6] [6]
Q7)	a) b)	output260MW.Each turbine runs at 110 rpm under a head of 50m, and has an efficiency of 88%. If the model of these turbines is to be tested in a flume with discharge of 350lps under a head of 4.5m, determine the scale ratio of the model. Also calculate the model speed and power results expected from the model. SECTION II Write a note on velocity distribution in open channel flow. Explain how the flow through open channel is different from that through a pipe. Design a most economical trapezoidal open channel with side slopes 2H: 1V and bed slope of 0.00059 to carry a discharge of 58cumec. Assume Chezy's constant	[6]
Q7)	a) b)	output260MW.Each turbine runs at 110 rpm under a head of 50m, and has an efficiency of 88%. If the model of these turbines is to be tested in a flume with discharge of 350lps under a head of 4.5m, determine the scale ratio of the model. Also calculate the model speed and power results expected from the model. SECTION II Write a note on velocity distribution in open channel flow. Explain how the flow through open channel is different from that through a pipe. Design a most economical trapezoidal open channel with side slopes 2H: 1V and bed slope of 0.00059 to carry a discharge of 58cumec. Assume Chezy's constant as 55.	[6]
	a) b) c)	output260MW.Each turbine runs at 110 rpm under a head of 50m, and has an efficiency of 88%. If the model of these turbines is to be tested in a flume with discharge of 350lps under a head of 4.5m, determine the scale ratio of the model. Also calculate the model speed and power results expected from the model. SECTION II Write a note on velocity distribution in open channel flow. Explain how the flow through open channel is different from that through a pipe. Design a most economical trapezoidal open channel with side slopes 2H: 1V and bed slope of 0.00059 to carry a discharge of 58cumec. Assume Chezy's constant as 55. OR	[6] [6]
	a) b) c)	output260MW.Each turbine runs at 110 rpm under a head of 50m, and has an efficiency of 88%. If the model of these turbines is to be tested in a flume with discharge of 350lps under a head of 4.5m, determine the scale ratio of the model. Also calculate the model speed and power results expected from the model. SECTION II Write a note on velocity distribution in open channel flow. Explain how the flow through open channel is different from that through a pipe. Design a most economical trapezoidal open channel with side slopes 2H: 1V and bed slope of 0.00059 to carry a discharge of 58cumec.Assume Chezy's constant as 55. OR A concrete lined channel of diameter 2.5m has a bed slope of 1 in 500.Determine	[6] [6]

Q9)	a)	Define Froude Number. Give flow classification based on Froude's number.	[4]
	b)	Write in detail about specific energy diagram.	[4]
	c)	Water flowing in a channel has a discharge of 10 cumec. The channel width is	[8]
		3.5m and side slope 1:1. The depth of flow is 1.2m. What is the specific energy of	
		water? Determine the Froude number and comment on the type of flow.	
		OR	
Q10)	a)	i) Give the classification of hydraulic jump with their Froude number.	[4]
		ii)State the applications of hydraulic jump.	[4]
	b)	A spillway has a width of 68m .If the tailwater depth is 4.5m and discharge over	[8]
		the spillway is 470cumec, determine the depth before jump, height and length of	
		the jump. Also find the energy lost in the jump.	
Q11)	a)	i) State the assumptions made in GVF.	[4]
		ii) Compare GVF and RVF.	[4]
	b)	Explain the step method for integrating the varied flow equation.	[8]
		OR	
Q12)	a)	A rectangular channel is 8m wide. It has a bed slope of 0.00025 and a uniform	[10]
		depth of flow of 1.8m.A weir is constructed at the downstream end of the channel	
		thereby water surface at a specific section is raised by 0.9m. What will be the	
		water surface slope with respect to horizontal at this section? Consider	
		Manning's roughness coefficient as 0.025.	
	b)	State the assumptions made in the derivation of dynamic equation for GVF.	[6]