| Total No. of Questions : 12] | | SEAT No. : | |------------------------------|---------------------------|-------------------------| | P1686 | [4859]-17
B.E. (Civil) | [Total No. of Pages : 3 | ## ADVANCED FOUNDATION ENGINEERING (2008 Pattern) (Elective-III) (Semester-II) Time: 3 Hours [Max. Marks: 100 Instructions to the candidates: - Answer any three questions from each section. - 2) Answers to the two sections should be written in separate books. - 3) Neat diagrams must be drawn wherever necessary. - Your answers will be valued as a whole. 4) - Use of electronic pocket calculator & IS codes & IRC codes are not allowed. *5*) - Assume suitable data, if necessary. **6**) - **SECTION-I Q1)** Explain the following: [18] IS code provisions for subsoil explorations. a) b) Significant depth. IRC provisions for explorations of roads. c) OR Discuss in brief different case studies for failures of foundation. **Q2)** a) [9] Explain any two 'Geophysical Methods'. [9] b) Compare the following raft foundation design, *Q3*) a) [10] Conventional Method. - - i) - Soil line method. ii) - b) How will you calculate safe load & settlement from field test data, for a square footing? Explain by sample calculations. [6] OR | a) | Explain 'Hansen's Method'. | | [8] | |----|---|---|---| | b) | Exp | lain the use of 'Geo-slope'. | [8] | | a) | Hov | v the Q_a is determined in a cyclic pile load test? | [8] | | b) | Disc | cuss various types of piles based upon the functions & ma | iterials
[8] | | | | OR | | | a) | Wha | at is 'LLP'? How E_s , T & η_z is determined, for a LLP? | [8] | | b) | Exp | lain the steps for 'Reese & Matlock' method. | [8] | | | | SECTION-II | | | a) | | | for the [10] | | | i) | kx = ky. | | | | ii) | kx = 5 ky. | | | b) | Exp | lain the steps for 'Stone column design'. | [8] | | | | OR | | | a) | Hov | v will you determine LCC of under reamed pile for, | [10] | | | i) | Clayey soil. | | | | ii) | Sandy soil. | | | b) | Exp | lain the procedure for construction of 'stone column'. | [8] | | a) | Exp | lain the design provisions for, | [8] | | | i) | Well curb. | | | | ii) | Cutting edge. | | | | iii) | Steining thickness. | | | | iv) | Bottom plug. | | | | b)a)b)a)b)b) | a) How b) Discussed a) What b) Exp a) Des following ii) iii) b) Exp a) How ii) iii) b) Exp a) Exp i) iii) iii) iii) | b) Explain the use of 'Geo-slope'. a) How the Q_a is determined in a cyclic pile load test? b) Discuss various types of piles based upon the functions & maused. OR a) What is 'LLP'? How E_s, T & η_z is determined, for a LLP? b) Explain the steps for 'Reese & Matlock' method. SECTION-II a) Design a sand drains system, showing sample calculations, following cases, i) kx = ky. ii) kx = 5 ky. b) Explain the steps for 'Stone column design'. OR a) How will you determine LCC of under reamed pile for, i) Clayey soil. ii) Sandy soil. b) Explain the procedure for construction of 'stone column'. a) Explain the design provisions for, i) Well curb. ii) Cutting edge. iii) Steining thickness. | b) Explain 'Lacey's' design for, [8] - i) Grip length. - ii) NSD. OR - Q10)a) Discuss the provision made as per IRC for well foundation design. [8] - b) Explain 'Banerjee & Gangopadhyay Analysis'. [8] - Q11)a) Discuss different types of 'cofferdams'. [8] - b) Explain the steps for 'Anchared sheet pile design'. [8] OR - Q12)a) Explain the steps for circular, cellular, cofferdam design. [8] - b) Compute the 'D' & 'P' in anchor rod, for a sheet pile cofferdam of 6.5m high, retaining soil as a backfill & below D.L. is same with following data, $\phi = \phi' = 30^{\circ}$, $\gamma_{sat} = 23$ kN/m³, $\gamma = 19$ kN/m³, Anchar rod is 1.5m below the top, GWT = 3m above D.L. Use 'Free Earth Support' method. [8] ••••