Total No. of Questions : 12]		SEAT No.:
P1674	[4859]-1	[Total No. of Pages : 3
	B.E. (CIVIL)	

ENVIRONMENTAL ENGINEERING-II (2008 Course) (Semester - II)

Time: 3 Hours] [Max. Marks: 100

Instructions to the candidates:

- 1) Solve Q.1 or Q.2, Q3 or Q4,Q.5 or Q.6 from section I and Q.7 or Q.8,Q.9 or Q.10,Q11 or Q.12 from section II.
- 2) Answers to the two sections should be written in separate books.
- 3) Neat diagrams must be drawn wherever necessary.
- 4) Figures to the right indicate full marks.
- 5) Use of logarithmic tables, slide rule, Mollier charts, electronic pocket calculator and steam tables is allowed.
- 6) Assume suitable data, if necessary.

SECTION - I

- Q1) a) Discuss in details separate and combined systems of sewarages with their rnerits and limitations.[6]
 - b) The BOD of sewage incubated for one day at 30°C has been found to be 200m/lit. What will be 5 day BOD at 20°C? Assume K=0.12 (base10) at 20°C. [6]
 - c) Differentiate between sanitary sewage and Industrial wastewater. [4]

OR

Q2) a) Design a sanitary sewer for the following data:

[6]

- i) Population=100000persons.
- ii) Rate of water supply=140 lit/capita/day.
- iii) N=0.013
- iv) Peak factor = 2.5
- v) Slope = 1 in 850
- b) Explain procedure of C.O.D. test.

[6]

c) Expalin with neat sketch 'Drop manhole'.

[4]

Q3) a)					
b)	Design an activated sludge process for following data: i) Municipal wastewater flow rate = 15,000 m ³ /		1 = 000 2/1		
	ii) BOD of settled		200 /1:		
	iii) BOD of treated		- /1:		
	iv) Yield coefficien		4 "		
		cay coefficient,kd =			
	vi) MLSS, X	= = = = = = = = = = = = = = = = = = =			
	,	olids concentration, $X_r =$			
	viii) Mean cell reside	1			
Determine:					
	1) Volume of react	or.			
	2) F/M ratio.				
	3) Volumetric loading rate.				
	4) Oxygen requirement.				
	5) Recycle ratio.				
	6) BOD removal e	fficiency.			
		OR			
Q4) a)	Design a high rate trickling filter using N.R.C. equation for following data: [12]				
	i) Sewage flow	=	1.53.51.1		
	ii) Recirculation ra	tio =	1.5		
	iii) BOD	=	= 200mg/lit.		
	iv) BOD removal in	primary clarifier =	35%		
	v) Final effluent B	= -	= 20mg/1.		
b)	Explain the two stage Trickling filter with neat flow diagram. [6]				
Q5) a)	With the help of neat sketch explain Oxygen Sag Curve [6]				
b)	What are the natural forces acts for the purification of streams? [6]				
c)	Explain different treatment units in preliminary treatment of waste water. [4] OR				
Q6) a)	Design a grit chamber for the following data: [6]				
	i) Maximum flow: 30 MLD				
	ii) Diameter of particle to be removed: 0.2 mm and more.				
	iii) Specific gravity of particle: 2.65.				
	iv) Average temperature: 20°C.				
b)	Design bar screen for a peak flow of 60 million liters per day. [6]				
c)	c) Write a short note on proportional flow weir. [4]				

SECTION - II

Q7) a) Discuss different chemical treatment options for Industrial wastewater.[6]
b) Write in details design parameters of aerated lagoons and mention the advantages and disadvantages of the same. [6]
c) Define: [4]
i) MLSS and

OR

- **Q8)** a) Explain the algal Bacterial symbiosis. [6]
 - b) Write short note on Oxygen sag curve. [4]
 - c) Write about constructional details and design criteria of oxidation ditch.[6]
- Q9) Design a septic tank to treat sewage from a working women hostel of 2500 residents. Water supply rate 130 lpcd [16]
 Draw a neat sketch giving plan elevation of a septic tank designed above. Also design and draw a soak well for the above septic tank considering percolation capacity of the filter media say 1250 L/m³ day. Assume all other required data.

OR

Q10) Explain with the help of neat sketch of conventional sludge digester and explain the following:-

Different stages of the digestion process.

Design parameters of anaerobic digester.

Capacity of the digester.

ii)

MLVSS

[16]

Q11) With the help of manufacturing flow diagram, explain the sources of wastewater generation from sugar industry. Also discuss its characteristics and treatment options with the help of neat sketch.[18]

OR

Q12) With the help of manufacturing flow diagram, explain the sources of wastewater generation from Textiles industry. Also discuss its characteristics and treatment opthaions with the help of neat sketch.[18]

ಹುಹುಹು