Total	No.	of Questions : 12]	SEAT No. :
P35	54		[Total No. of Pages : 4
		[4859] - 28	
		B.E. (Civil)	
		WAVE MECHANICS	
		(2008 Pattern)	
Time	:3 E	Hours]	[Max. Marks : 100
Instr	uctio	ons to the candidates:	
	<i>1)</i>	Answer any three questions from each section.	
	<i>2)</i>	Answer to the two sections should be written in s	eparate answer books.
	3)	Neat diagrams must be drawn wherever necessa	ry.
	<i>4)</i>	Figures to the right indicate full marks.	
	<i>5)</i>	Your answer will be valued as a whole.	
	<i>6)</i>	Use of electronic pocket calculator is allowed.	
	7)	Assume suitable data if necessary.	
		SECTION - I	
Q 1)	a)	Discuss classification of waves.	[4]
	b)	Write a short note on wave rider buoy.	[4]
	c)	Obtain the values of significant wave height a generated by a wind (corrected) speed of 24 hours over a fetch of 100 km. State whether to duration controlled. Use SMB curves.	2 m/s and lasting for 3

OR

Q2) a) Define fully developed sea, partially developed sea, swell.

b) Discuss the process of wave generation.

10 m above mean sea level.

Discuss the corrections required to be done in wind velocity measured **[6]**

[6]

[4]

<i>Q3</i>)	a)	Obtain expression for pressure below sea surface. [6]
	b)	Draw a figure showing relative profiles of linear, Stokian, Cnoidal and solitary waves in a single sketch. [4]
	c)	A wave with a period of 8 sec in a deep water depth of 15 m and significant wave height of 5.5 m. Find the local horizontal and vertical velocities and accelerations at an elevation of $Z = -5$ m below the SWL when $\theta = 60^{\circ}$.
		OR
Q 4)	a)	Prove that water particle displacement follows the elliptical profile.[6]
	b)	State all assumptions of a wave theory. What are additional assumptions for a linear wave theory. [4]
	c)	A wave with period of 10 sec and significant wave height of 2.5 m moves towards the shore normal to the sea bed contour. Obtain the rate at which energy per unit width is transported towards the shoreline. Find total energy delivered in 2 hours. [8]
Q5)	a)	Write short note on uses of wave spectra. [6]
	b)	Write short note on Pierson-Muskowitz Spectrum. [4]
	c)	What is long term wave height statistics? Name various distribution used to achieve the same while explaining Weibull distribution in detail. [6]
		OR
<i>Q6</i>)	a)	Distinguish between short term analysis-long term analysis, probability density function-probability distribution function, stationary process-ergodic process, autocorrelation function-spectral density function.[10]
	b)	Write short note on JONSWAP method. [6]

SECTION - II

Q 7)	a)	Derive assumption in the theory of refraction. [6]		
	b)	What is wave breaking? Discuss with respect to interaction with current and solitary theory. Discuss various ways of wave breaking. [6]		
	c)	Write in brief about wave reflection. [6]		
OR				
Q 8)	a)	A wave has 3m height and 7 seconds period in deep water. It travels towards shore over parallel bed contours. If its crest line makes an angle of 30 with the bed contour of 10 m before refraction. Calculate the wave height after crossing this contour line. [10]		
	b)	Write short note on wave set up and set down. [8]		
Q9)	a)	Draw Minikin's wave pressure diagram. State formula for total breaking force on wall and total moment about toe. [8]		
	b)	What is effect of angle of wave approach on breaking or broken waves? Discuss effect of non-vertical walls on breaking and broken wave forces. [8]		
OR				
Q10)	a)	Draw sketches for pressure distribution of non breaking wave forces when crest appears on the wall and trough appears on the wall. [8]		
	b)	For a smooth faced vertical wall the incident wave height is 2.5 m and depth at the structure of the toe is 3 m. For a wave period of 9 sec find the height of the clapotis crest and trough above the bottom (yc and yt) [8]		

Q11) a) Write in brief about calculation of wave forces using Dean's theory.[10]

b) A one meter jacket leg is subjected to an attack of waves which are 4 m high, 55 m long and 7 seconds in peirod. Determine the maximum drag force, maximum Inertia force, Total Force at $\theta = \pi / 4$ at a location 8 m below SWL. The water depth is 60 m. Take $C_D = 1$, $C_M = 2$, $\rho = 1030 \text{ kg/m}^3$. Use linear theory. [6]

OR

Q12) a) Derive equation for variation of drag force along the total member length of vertical member. [8]

b) Discuss effect of roughness on C_D and C_M . [4]

c) Write short note on wave slam. [4]

XXXX