Total No. of Questions :10]		SEAT No.:
P1811	[4859]-214	[Total No. of Pages :3
	B.E. (Computer)	

ADVANCED COMPUTER ARCHITECTURE AND COMPUTING (2008 Pattern) (Semester - II)

Time: 3 Hours] [Max. Marks:100

Instructions to the candidates:

- 1) Answer any three questions from each section.
- 2) Answers to the two sections should be written in separate books.
- 3) Neat diagrams must be drawn wherever necessary.
- 4) Figures to the right indicate full marks.
- 5) Assume suitable data if necessary.

SECTION - I

- Q1) a) Explain following classification approaches for multiprocessor: [12]
 - i) Degree of coupling
 - ii) Memory access
 - iii) Flynn's classification
 - iv) Feng's classification
 - b) List and explain the basic issues in parallel processing. [6]
- **Q2)** a) Consider a dynamic pipelining with five segments S_1 , S_2 , S_3 , S_4 and S_5 characterized by following reservation table [12]

	t_0	t ₁	t_2	t_3	t_4	t ₅	t_6	t ₇	t ₈
S_1	X								X
S_2		X	X					X	
S_3				X					
S_4					X	X			
S_5							X	X	

		i)	Determine latencies in the forbidden list (F) and the collision vector(C)							
		ii)	Draw the state diagram for uniform pipeline							
		iii)	Calculate sample cycles and greedy cycles							
		iv)	Determine Minimum Average Latency (MAL)							
	b)	How	loop-unrolling technique improves performance of pipelining?[4]							
Q3)	a)	What are characteristics of vector processors? Explain implementat of following loop in conventional scalar processor and vector process								
			DO 100 $I = 1, N$							
			A(I) = B(I) + C(I)							
			100 $B(I) = 2*A(I+1)$							
	b)	_	Explain following pipelined vector processing methods with respect to vector summation computation. [8]							
		i)	Vertical Processing							
		ii)	Vector Looping							
		How	How intermediate results are handled in both the cases?							
Q4)	a) Draw and explain two different configurations of array processor the network design decisions are for inter PE communication?									
	b)	Consider a linear array of P processors. N keys have to be sorted parallel Initially N keys are equally divided among all processors. Assuming SIMI architecture, write a parallel algorithm to sort N keys. [8]								
Q5)	Writ	Write short notes on any two: [10]								
	a)	Systolic array architecture								
	b)	Bus arbitration techniques in multiprocessing systems								

[4859]-214

c) VLIW processor

b)

SECTION - II

Q6)	a)	List and explain various design issues involved in designing multiprocess system.				
	b)	Explain following types of network used to implement processor-memo interconnection with respect to shared memory multiprocessor system.				
		i)	Multiport Memory			
		ii)	Multistage Network			
Q7)	a)	a) Explain following issues in multiprocessor systems				
		i)	Inter process communication			
		ii)	Synchronization software mechanism			
	b)	What are the different alternatives for interconnecting processors are memory with respect to shared memory multiprocessor systems? [8]				
Q8)	a)	What is basic concept of Multithreading? Explain multithreaded architectures and it's computational model for parallel processing systems. [8]				
	b)	Discuss salient features of parallel processing languages. [8]				
Q9)	a)	What are the features of Scalable Processor Architecture? Explain register windows and its parameter passing between procedures of SPARG architecture.				
	b)	Disc	uss Cache Coherence Problem and its solutions. [8			
Q10)Writ	e sho	rt note on any two: [16			
	a)	Neuro Computing				
	b)	Later	ncy hiding techniques			
	c)	Optio	cal computing			
			$\mathcal{E}\mathcal{E}\mathcal{E}$			