Total No.	of Questions	:12]
-----------	--------------	------

\mathbf{n}_{1}	700
\mathbf{P}	/44
	1 / /

SEAT No.:	
-----------	--

[Total No. of Pages :3

[4859]-202

B.E (Computer Engg.)

DESIGN & ANALYSIS OF ALGORITHMS (2008 Course) (410441) (Semester - I)

Time: 3 Hours] [Max. Marks:100

Instructions to the candidates:

- 1) Answer 3 questions from section I and 3 questions from section II.
- 2) Answers to the two sections should be written in separate books.
- 3) Neat diagrams must be drawn wherever necessary.
- 4) Figures to the right indicate full marks.
- 5) Assume suitable data, if necessary.

SECTION - I

- **Q1)** a) Prove by contradiction: There exist two irrational numbers x and y such that x^y is rational. [8]
 - b) Write an algorithm for Merge Sort. State its time complexity. [6]
 - c) Explain the Greedy Kruskal's minimum spanning tree. [4]

OR

- Q2) a) Consider the following instances of knapsack problem. n=3, m=20, $(p_1, p_2, p_3) = (25, 14, 15)$ and $(w_1, w_2, w_3) = (18, 15, 10)$. Find the feasible solutions using greedy method. [8]
 - b) Explain a control abstraction for divide and conquer strategy. Write the recurrence relation for quick sort. [6]
 - c) Explain the different ways of measuring the running time of an algorithm. [4]
- **Q3)** a) With respect to dynamic programming explain the following: [8]
 - i) Principle of Optimality
 - ii) Optimal substructure
 - b) State multistage graphs problem and explain how it can be solved using forward approach. [8]

Q4) a)	Explain Travelling Salesperson problem using dynamic pro	gramming with
	example. Specify its complexity.	[8]

b) Let n=3 and
$$(k_1, k_2, k_3) = \{do, if, while\}$$
 [8]

Let $p(1:3) = \{0.5, 0.1, 0.05\}$

Let $q(0:3) = \{0.15, 0.1, 0.05, 0.05\}$

Compute and construct OBST for above values.

- **Q5)** a) Write an algorithm to solve 8-Queens problem using backtracking method.
 - b) Explain the difference between FIFO and LC branch-and-bound solution to 0/1 knapsack. [8]

OR

- **Q6)** a) Write recursive backtracking schema for m coloring of the graph. Determine the time complexity of the same. [8]
 - b) Explain how branch and bound method can be used to solve travelling salesperson problem. [8]

SECTION - II

- Q7) a) Explain how Directed Hamiltonian Cycle (DHC) reduces to travelling salesperson decision problem (TSP).[6]
 - b) Show that the job sequencing with deadlines problem is NP-hard. [8]
 - c) What are non-deterministic problems? Explain classes NP-hard and NP-complete. [4]

OR

- Q8) a) Show that partition reduces to minimum finish time preemptive job shop schedule.[6]
 - b) Explain NP-Hard scheduling problem with example. [6]
 - c) State and explain Cook's Theorem. [6]

Write an algorithm for prefix computation. Determine its time complexity. **Q9**) a) Explain how graph problems can be solved on parallel processors. [8] b) OR Write and explain pointer doubling algorithm with suitable example. [8] *Q10*)a) How merge sort algorithm can be implemented on multiprocessors? b) Explain it with an example. [8] Explain the sequential and parallel technique for solving the convex Hull **Q11)**a) problem? What is meant by heuristic algorithms? Explain any one heuristic search b) algorithm. [8] OR Explain resource allocation algorithm with deadlock avoidance. *Q12*)a) [8] Explain Huffman coding algorithm with example. [8] b)

888