| <b>Total</b> | No. | $\mathbf{of}$ | Questions | :12] |  |
|--------------|-----|---------------|-----------|------|--|
|--------------|-----|---------------|-----------|------|--|

| SEAT No.: |  |
|-----------|--|
|-----------|--|

## P1800

# [4859]-203

[Total No. of Pages :4

# B.E. (Computer Engineering) PRINCIPLES OF COMPILER DESIGN

(2008 Course) (Semester - I)

Time: 3 Hours] [Max. Marks:100

Instructions to the candidates:

- 1) Answer 3 questions from section I and 3 questions from section II.
- 2) Answers to the two sections should be written in separate books.
- 3) Neat diagrams must be drawn wherever necessary.
- 4) Figures to the right indicate full marks.
- 5) Assume suitable data, if necessary.

#### **SECTION - I**

- Q1) a) Explain role of lexical analyzer in compilation process. Also explain how lexical errors are identified.[6]
  - b) Construct predictive parsing table for following grammar. Verify your answer by showing the parser steps for a valid string of grammar. [8]

$$P \rightarrow St$$

 $S \rightarrow q ABC$ 

 $A \rightarrow a \mid bb D$ 

 $B \rightarrow a \mid \in$ 

 $C \rightarrow b \mid \in$ 

 $D \to c \mid \; \in$ 

c) Discuss how parsing techniques are classified? Support your answer with example. [4]

OR

**Q2)** a) Discuss various design issues related to compiler.

[4]

b) Construct SLR parsing table for following grammar:

[8]

$$S \to x A y | x B y | x A z$$

$$A \rightarrow a S | q$$

$$B \rightarrow q$$

Verify your answer by showing parser steps for a valid string of grammar.

c) Explain Recursive Descent Parser with example. Will Recursive Descent Parser work with ambiguous grammar? [6]

- Q3) a) What is role of semantic analyzer in compilation process? [4]
  - b) Differentiate between synthesized attributes and inherited attributes. By taking example of declarative statement in 'C' language, explain how inherited attributes are used with bottom-up parser. [6]
  - c) Explain following terms in brief: [6]
    - i) Type checking
    - ii) Type expression
    - iii) Type coercion

OR

- **Q4)** a) What is syntax directed translation? What are its advantages? [4]
  - b) Given following grammar for Pascal style declaration. [8]

 $D \rightarrow L : T$ 

 $L \rightarrow L$ , id | id

 $T \rightarrow integer | real$ 

Add semantic actions for adding type of identifier in the symbol table. Draw the parse tree and annotated parse tree for the sentence

a, b, c : real

- c) What is type conversion? How semantic analyzer accomodates type conversion? Explain with example. [4]
- Q5) a) Explain syntax directed translation scheme for Boolean expression. Generate intermediate code for following statement using the above scheme. p and q or x and y[8]
  - b) Differentiate between triples and indirect triples. Give proper example. [4]
  - c) Explain the support given by LEX and YACC tools for generating intermediate code. [4]

OR

- **Q6)** a) Translate following code fragment into three address statements. Represent these three address statements in quadruple format. [8]
  - b) Write syntax directed scheme for simple assignment statement. Generate intermediate code for statement a = b + c \* d using this scheme. [6]
  - c) What is use of marker non terminal in syntax directed translation scheme. [2]

### **SECTION - II**

- **Q7)** a) Which are different data structures used for symbol table? Discuss in detail. [6]
  - b) Define activation record. Explain with example the elements of activation record. [6]
  - c) Explain the difference in storage organization and allocation strategies for block-structured and non-block structured languages. [6]

OR

- **Q8)** a) Discuss storage organization and allocation strategies. [6]
  - b) Explain run-time management of variable length data. [6]
  - c) Explain following:
    - Call by Value, Call by Name, Call by Reference [6]
- **Q9)** a) With proper example, explain the process of generating code from labeling tree. [8]
  - b) What is DAG? Explain its use in code generation. Generate DAG for following three address statements. [8]

$$T_1 = A + B$$

$$T_2 = C + D$$

$$T_3 = E - T_2$$

$$T_4 = T_1 - T_3$$

OR

| <b>Q10)</b> a) | What are various issues related to code generation?                                            |                                                                                            |              |  |  |
|----------------|------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|--------------|--|--|
| b)             | With suitable example explain basic blocks and flow graph.                                     |                                                                                            |              |  |  |
| c)             | Wri                                                                                            | te short notes: Peephole optimization, code generator.                                     | [8]          |  |  |
| <b>Q11)</b> a) | Explain fundamental data flow properties.                                                      |                                                                                            |              |  |  |
| b)             | Exp                                                                                            | plain following optimizations with examples:                                               | [8]          |  |  |
|                | i)                                                                                             | Common subexpression elimination                                                           |              |  |  |
|                | ii)                                                                                            | Code movement                                                                              |              |  |  |
|                | iii)                                                                                           | Variable propagation                                                                       |              |  |  |
|                | iv)                                                                                            | Strength reduction                                                                         |              |  |  |
|                |                                                                                                | OR                                                                                         |              |  |  |
| <b>Q12)</b> a) | Compare quadruples, triples and indirect triples with respect to their u in code optimization. |                                                                                            |              |  |  |
| b)             |                                                                                                | at are induction variables? Explain with example how indu ables help in loop optimization. | ction<br>[6] |  |  |
| c)             | Exp                                                                                            | olain in brief: Live variable analysis.                                                    | [4]          |  |  |