Total No. of Questions: 12]	SEAT No.:
P3168	[Total No. of Pages : 2

[4859]-115

B.E. (Electronics)

ADVANCED MEASUREMENT SYSTEMS

(2008 Pattern) (Semester - I)

Time: 3 Hours [Max. Marks : 100] Instructions to the candidates: Solve Q.1 or Q.2, Q.3 or Q.4, Q.5 or Q.6 from Section - I and Q.7 or Q.8, Q.9 or Q.10, Q.11 or Q.12 from Section - II. 2) Figures to the right indicate full marks. Assume suitable data, if necessary. 3) Both sections should be written separately. 4) **SECTION - I** (01) a) What are the signal integrity testing challenges and possible solutions?[8] b) Explain arbitrary waveform generator in detail. [8] OR State and explain electrical validation and debug with DPO. Q(2)[8] a) b) Explain in detail signal integrity design issues. [8] 03) a) Explain architecture, operation and use of logic analyzer. [8] b) Explain hardware design and testing methods of spectrum analyzer. [8] OR

Q4) a) Explain architecture, operation and use of Network analyzer. [8]

b) Explain DSO trigger modes. What is the use & limitations different types of Analysis. [8]

Q5) a) Explain embedded communication using Ethernet. [8]

- b) What are the design issues and the role of electronic measurements for debugging in automotive electronics? [4]
- c) What are the different interfacing techniques? Explain interfacing of graphic LCD (320×240) display. [6]

OR

<i>Q6)</i>	Wr	rite short notes on the following:	[18]
	a)	GSM Modem.	
	b)	Embedded communication using RF Modules.	
	c)	Interfacing of touch screen.	
		SECTION - II	
Q7)	a)	What are the barraters? Explain the operation of direct reading barra bridges.	iters [8]
	b)	Explain in detail measurement of VSWR.	[8]
		OR	
Q8)	a)	Explain transmission cavity & reactor wave meter.	[8]
	b)	What is attenuation? Explain measurement of free space attenuation	. [8]
<i>Q9</i>)	a)	Explain VISA (GPIB, VXI, PXI) and SCPI coding.	[8]
~	b)	Explain role of software & Hardware in virtual instrumentation.	[8]
		OR	. ,
Q10)	a)	Explain FDM and ASK Modulation techniques in virtual instrumentat	ion.
			[8]
	b)	Explain application of modulation techniques in Distortion Analyzer	. [8]
Q11)	a)	Explain different modes of Universal counter.	[6]
	b)	Explain automation in digital instruments.	[6]
	c)	Explain DAC techniques in detail.	[6]
		OR	
Q12)	Wr	ite short note on any three:	[18]
	a)	Sample and hold.	
	b)	ADC techniques in digital instrumentation.	
	c)	V to F converter.	
	d)	Data Loggers.	

