Total No. of Questions :12]		SEAT No. :
P1706	[485 9]_ 47	[Total No. of Pages :5

[4859]-4/ B.E. (Mechanical)

d:ADVANCED AIR-CONDITIONING & REFRIGERATION (2008 Course) (Semester - II) (Elective - III) (402049)

Time: 3 Hours [Max. Marks:100

Instructions to the candidates:

- 1) Answer three questions from each section.
- 2) Answer to the two sections should be written in separate answer- books.
- 3) Draw diagrams wherever necessary.
- 4) Use of scientific calculator is allowed.
- 5) Assume suitable data wherever necessary.

SECTION - I

- **Q1)** a) Explain Ejector type transcritical refrigeration cycle.
- [8]
- b) Explain actual vapour compression cycle using p-h and T-s diagram.[10]

OR

Q2) a) Write a short note on "Secondary Refrigerant".

- [6]
- b) 3TR HFC -134a refrigerating machine operates between a condenser temperature of 40°C and an evaporator temperature of 0°C. Calculate the increase (%) in the theoretical piston displacement/TR and the power consumption/TR of the cycle: take c_p of gas as 1.4 kJ/kg.K [12]
 - i) If the evaporating temperature is reduced to -30°C.

OR

ii) If the condensing temperature is increased to 60°C.

Ts(°C)	h _f (kJ/kg)	h _g (kJ/kg)	$S_f(kJ/kg)$	S _g (kJ/kg)	V(m³/kg)
-30	162.33	387.08	-	1.7766	0.2240
0	200	405.17	-	1.7511	0.0689
40	256.43	426.17	1.1930	1.7350	0.0199
60	288.34	433.91	1.2893	1.7263	0.0114

Q 3)	a)	Discuss various types of cooling tower.						
	b)	Discuss the principal dimensions of reciprocating compressor.						
			OR					
Q4)	a)	A single cylinder, single acting reciprocating compressor with clearance is used in a refrigeration cycle to take volumetric capacity cmm at 5°C (3.6 bar) refrigeration temperature and 40°C(9.6 becondensing temperature. The compresssor index is 1.15. The speed the piston is limited to 3 m/s. Take L/D=1, specific volume as 0.0 m ³ /kg. Determine:						
		i)	Power consumption of the compressor.					
		ii)	Volumetric efficiency.					
		iii)	Bore, stroke and RPM of the compressor.					
	b)	Write a short note on:						
		i)	Electronic expansion valve					
		ii)	Design aspects of evaporator					
Q5)	a)		cribe the methods of controlling IAQ. List the pollutants taminants present in the air with source.	s & [8]				
	b)	Exp	lain the following:	[8]				
		i)	Thermal overload protection for hermetic motors.					
		ii)	Reduced voltage protection.					
		iii)	Motor over current protection.					
		iv)	Adjustable speed drives.					
			OR					
Q6)	a)	Exp	lain the methods of purging noncondensables.	[8]				
	b)	Dra	w & explain electric circuit for oil pressure failure control.	[8]				

SECTION - II

Q7) a) A 25 cm brick wall with plaster on both sides exposed to the periodic temperature and incident radiant variation on an hourly basis between 7 am and 6 pm is given in the table. Determine the average and peak load on the air conditioner maintaining the room at 23°C per unit area of the wall. Also determine the heat gain at 5 pm and time of peak load. Use time lag & decrement method.

Reflectivity of plaster, = 0.4

[12]

Thermal conductivity of plaster, k=0.14 W/mK

Thickness of plaster material = 3 mm

Thermal conductivity, k = 1.5 W/mK

Outside wall coefficient, $h_0 = 23 \text{ W/m}^2\text{K}$

Inside wall coefficient, $h_i = 7 \text{ W/m}^2\text{K}$

Average sol-air temperature $(T_{em}) = 42.14$ °C

Time lag = 5hrs; Decrement factor = 0.455

Time	7	8	9	10	11	12	1	2	3	4	5	6
	am	am	am	am	am	noon	pm	pm	pm	pm	pm	pm
$T_{o}(^{\circ}C)$	29	31.5	33.5	35.5	37	38.5	39.5	40.5	41.5	39.5	39	38
I	186	390	640	814	954	1000	960	825	645	385	190	47
(W/m^2)												

b) Discuss inside design conditions of followings:

[6]

- i) Cold storage
- ii) Industrial air conditioning
- iii) Comfort air conditioning

OR

Q8) a) Write a short note on:

[4]

Sol-air temperature

b) Explain the purpose and scope of ECBC.

[6]

c) Discuss the factors affecting ETD. State the corrections applied for calculating ETD. [8]

[4859]-47

- **Q9)** a) Discuss the HVAC design criteria for IT centers.
 - b) Draw and explain air-to-air heat pump circuits: Fixed refrigerant circuit. [8]

[8]

OR

- **Q10)**a) Write a short note on "Air-conditioning of Multiplexes". [4]
 - b) Draw and explain air-to-liquid heat pump circuit. [6]
 - c) A heat pump is used for heating a building with a design load of 50000kJ/hr. Water at 10°C is available as a heat source and air supplied to the room is to be at 40°C. If the actual EPR attained is 60% of reverse Carnot cycle operating between the same temperatures, determine [6]
 - i) Actual EPR of the heat pump system
 - ii) The power input if motor efficiency is 80%
- Q11)a) List out the limitations of VCS for the production of low temperatures.[6]
 - b) Determine the following for a Linde system with air as working fluid when the system is operated between 1 bar and 200 bar at 300K. [10]
 - i) Ideal work
 - ii) Liquid yield
 - iii) Work per unit mass of compression
 - iv) Work per unit mass of liquefaction
 - v) Figure of merit

OR

- Q12)a) Discuss types of insulations used for low temperature applications? [6]
 - b) 1 kg of air at 30°C and 1 bar compressed isothermally to 20 MPa in a compressor in a claude cycle. Assume that 60% of the total mass of air compressed passes through the expander. The temperature of air entering the expander is -80°C, while the temperature of air leaving the expander is -140°C. The make-up air is supplied to the system at 30°C and 1 bar. Determine the yield of liquid and temperature of air before throttling. Draw the schematic diagram with T-s and p-h diagram. Use p-h chart of air.

Fig. 36 Pressure-Enthalpy Diagram for Refrigerant 729 (Air)

888