Total No. of Questions : 12]

SEAT No.:		
[Total	No. of Pages	:4

P1692

[4859]-32

B.E. (Mechanical)

CAD/CAM & AUTOMATION (2008 Pattern) (Samustan I)

(2008 Pattern) (Semester-I)

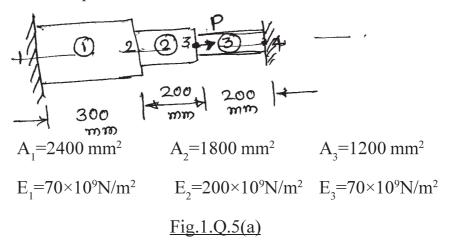
Time: 3 Hours [Max. Marks:100

Instructions to the candidates:

- 1) Answer 3 questions from each section.
- 2) Answer to the two sections should be written in separate books.
- 3) Figures to the right indicate full marks.
- 4) Use of calculator to allowed.
- 5) Assume suitable data, if necessary.
- 6) Neat diagrams must be drawn whenever necessary.

SECTION-I

- Q1) a) With the example of mid point transformation of a line, prove that geometic transformations are point based. [8]
 - b) Explain with suitable sketch orthographic, isometic and perspective projections. [10]


OR

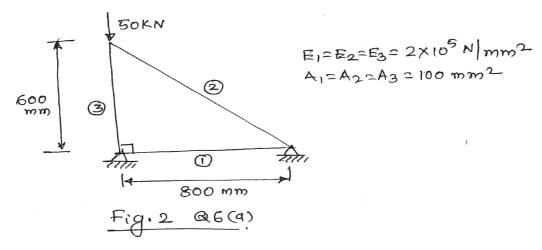
- Q2) a) A Triangle PQR with vertices p(0,0), Q(3.5,0) and R(2,3) is translated through 4 and 2 units along x and y directions respectively. Then it is rotated about new position if 'R' by 70° in counter clockwise direction. Find concatenated matrix and final position of triangle. [10]
 - b) Derive transformation matrix for reflection about an axis and plane.[8]
- Q3) a) Discuss parametric modeling of Beta-spline curve. State disadvantages of Bezier curve.
 - b) Explain the concept of feature based modeling in detail. [8]

OR

- **Q4)** a) Explain C^0 , C' and C^2 continuity with suitable example. [8]
 - b) Explain in detail boundary representation. [8]

Q5) a) Consider a 3 steped bar as shown in fig.1. with an axial load of P=400kN. find nodal displacements & stresses in each elements. [10]

b) Explain galerkin's method.


[6]

OR

Q6) a) A three truss bar element shown in fig.2. Determine

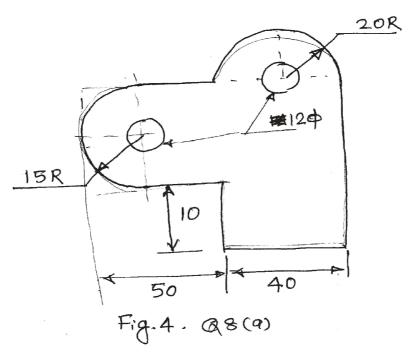
[10]

- i) Element stiffness matrix.
- ii) Global stiffness matrix.
- iii) Nodal displacement.
- iv) Stresses in each element.
- v) Reactions.

b) Explain Rayleigh Ritz method.

[6]

SECTION-II


Q7) a) Explain the concept of CIM in detail.

[8]

b) Write a CNC part program for roughing and finishing of the turning component as shown in fig3. Row material size $150 \times 80 \phi$. Assume suitable speed, feed and depth of cuts for mild steel materials. [10]

Q8) a) Write CNC part program for contouring and drilling of the component as shown in fig 4. by using G & M codes. Assume suitable data for speed, feed, and depth of cut for the aluminium blank size $100 \times 60 \text{ mm}^2$

b) Explain the concept of DNC with neat sketch.

[8]

[10]

Q9) a)	Explain in detail flexible manufacturing system. With all its components	.[8].
b)	Describe automatic storage & Retrival system.	[8]
	OR	
<i>Q10)</i> a)	Explain the concept of Group technology.	[8]
b)	Explain generative type of process Planning in detail.	[8]
Q11) a)	Explain different application areas of robot in detail.	[8]
b)	What is configuration of robot? Explain any two configurations in det	tail. [8]
	OR	
<i>Q12)</i> a)	Explain various motion commands used in VAL programming language	.[8]
b)	Explain with neat sketch different types of Joints used in robots.	[8]

