Total No. of Questions: 12]	SEAT No. :
P3624	[Total No. of Pages : 3

[4859] - 59

B.E. (Mechanical/Sandwich)

COMPUTATIONAL FLUID DYNAMICS

(2008 Pattern) (Elective - II)

Time: 3 Hours [Max. Marks: 100

Instructions to the candidates:

- 1) Answer any three questions from each section.
- 2) Answers to the two sections should be written in separate answer books.
- 3) Figures to the right indicate full marks.
- 4) Neat diagrams must be drawn wherever necessary.
- 5) Use of logarithmic tables, Mollier charts, electronic calculator is allowed.
- 6) Your answer will be valued as a whole.
- 7) Assume suitable data, if necessary.

SECTION - I

- Q1) a) Why is it important to correctly define the computational domain for the fluid flow problem? Explain with suitable examples. [10]
 - b) Explain significance of substantial derivative to describe the physics of flow, mathematically. [6]

OR

- Q2) a) How is CFD being used in the Civil and environmental industry? [8]
 - b) Write a force balance equation for all the forces acting on a differential control volume. [8]
- Q3) a) Name the sources of energy that contribute to the energy equation.[9]
 - b) Given the function $f(x) = 0.25x^2$ find the first derivative of f(x) at x = 3; using forward, backward and central differencing of order $(\triangle x)$. Use a step size of $\triangle x = 0.1$.

OR

- **Q4)** a) Apply Fourier's law of heat conduction to obtain the heat flux in the X-direction. [10]
 - b) Obtain the general analytical solution for Laplace's equation for a one dimension case. [8]
- **Q5)** a) What is the difference between using a direct method and an iterative method to solve the discretized equations? [6]
 - b) Is finite difference more suitable for structured or unstructured mesh geometries? Why? [12]

OR

- **Q6)** a) What is the technique associated with the successive over-relaxation and why is it used? [8]
 - b) Derive an expression for the equation of a boundary node subjected to a constant heat Flux from the environment. Use Fig.6(B) shown below for nomenclature. [10]

Fig.6(B)

SECTION - II

Q7) A plane wall of thickness δ has its surfaces maintained at temperature T1 and T2. The wall is made of a material whose thermal conductivity varies with temperature according to the relation $k = k_0 T^2$. Derive an equation to determine the temperature distribution by steady state heat conduction through the wall. [16]

OR

Q8) a)	Discuss various aspects of the explicit and implicit finite difference approach. [8]	
b)	How does time step affect stability, explain with suitable example. [8]	
Q9) a)	Describe the following types of grids: [16]	
	i) Boundary fitted grid.	
	ii) Staggered grid.	
	iii) Structured grid.	
	iv) Unstructured grid.	
OR		
Q10)a)	Considering the steps of SIMPLEC algorithm, justify the need for this algorithm. [8]	
b)	Describe the pressure correction approach incompressible viscous flow. [8]	
Q11)a)	Explain temporalmarching two dimensional method for inviscid flow. [8]	
b)	Justify the need of artificial viscosity to solve Navier Stoke equation. [8]	
	OR	
<i>Q12</i>)Wr	rite short notes on any two: [16]	
a)	Finite Difference method.	
b)	Finite Volume method.	
c)	Errors resulting in numerical solution.	

CFL criteria of stability.

d)