SEAT No. :	
[Total	No. of Pages :4

P1703

[4859]-44

B.E (Mechanical)

a: COMPUTATIONAL FLUID DYNAMICS

(2008 Course) (Elective - III) (Semester - II)

Time: 3 Hours] [Max. Marks:100

Instructions to the candidates:

- 1) Answer three questions from each section.
- 2) Answers to the two sections should be written in separate answer books.
- 3) Neat diagrams must be drawn wherever necessary.
- 4) Figures to the right indicate full marks.
- 5) Use scientific calculator is allowed.
- 6) Assume suitable data, if necessary and mention it clearly.

SECTION - I

- Q1) a) State different models of flow using control volume and explain the conservation and non-conservation form of equations. [8]
 - b) What is substantial derivative? Explain the local and convective derivatives with suitable physical example. [8]

OR

- **Q2)** Consider an appropriate control volume model and derive an expression for 3-D conservative form of momentum equation in partial differential form.[16]
 - a) Justify the selection of the control volume model used to derive momentum equation in conservation form.
 - b) Explain the force components in brief.
- Q3) a) Derive expressions for first order accurate forward difference, backward difference and central difference equations in y-direction. Explain order of accuracy for each expression.
 - b) Explain underrelaxation and overrelaxation with its merits and demerits.[6]

- **Q4)** a) Discretize the following equations with suitable approximations.
 - i) The two dimensional steady state and transient heat conduction equation.

[6]

- ii) The one dimensional transient convection diffusion equation.
- b) Consider a steady state heat transfer through circular cross-section tapered fin, governed by the equation given below $\frac{\partial^2 T}{\partial x^2} = \frac{hp}{kA}(T T_f)$. The temperature at the one end of the fin, as shown in figure, $T_b = 125^{\circ}\text{C}$ and the temperature of the surrounding fluid is given as $T_f = 25^{\circ}\text{C}$. Assume the tapered end is insulated. Obtain the temperature at interior nodes placed equidistance using suitable numerical technique [10]

Assume k = 1 W/mK and $h = 10 \text{ W/m}^2\text{K}$

 $D_1 = 20 \text{ mm}, D_5 = 10 \text{ mm}$ L = 120 mm, Taper angle, Θ = 2.39°

- Q5) a) Explain in detail different types of boundary conditions. Give suitable example for each boundary condition. [8]
 - b) Explain Thomas algorithm in detail for the solution of tri-diagonal matrix system. Give one example of a physical system where you get a tridiagonal system. [10]

OR

Q6) Two parallel plates with an infinite length are separated by distance 40mm. The lower plate is stationary while the upper plate is started moving with velocity 40 m/s. The flow is governed by following equation.

$$\rho \frac{\partial u}{\partial t} = \mu \frac{\partial^2 u}{\partial y^2}$$

Find the velocity distribution in y-direction for single time step with $\Delta t = 0.5$ s. Apply Crank-Nocolson's implicit method and use 5 nodes for finite difference approximation. Assume density of the fluid 800 kg/m3 and the kinematic viscosity of the fluid is $2.17 \times 10^{-4} \text{ m}^2/\text{s}$.

SECTION - II

- **Q7)** a) Explain MacCormack's technique with predictor and corrector step. [8]
 - b) What is implicit method? Explain in detail about Alternating Direction Implicit method. [10]

OR

Q8) Compute the solution of the first order wave equation with wave speed given as below[18]

$$\frac{\partial u}{\partial t} + C \frac{\partial u}{\partial x} = 0,$$
 $c = constant > 0$

For the first two steps using

- a) Lax-Wendroff scheme and
- b) Mac-cormack scheme.
- c) Comment on which of the above two scheme is more accurate?

The initial condition and boundary conditions are given below.

Initial condition:
$$u(x,0) = \begin{cases} (1-x)x, & 0 \le x \le 1 \\ 0, & x > 1 \end{cases}$$

Boundary condition: u(0, t) = 0, for all t.

Take
$$\Delta x = 0.25$$
, $C \frac{\Delta t}{\Delta x} = 0.25$

Derive a finite volume formulation for 2D convection diffusion equation. [8] **Q9**) a) What is upwind method? Derive an upwind formulation for 1D wave b) linear equation. [8] OR Explain in detail the merits of finite volume method over finite difference *Q10*)a) mehtod. Justify your comments. [8] Develop the solution methodology for 2D, unsteady convection-diffusion b) equation. [8] What is staggered grid? Explain its significance using incompressible **Q11)**a) flows. [8] Write in detail the SIMPLE algorithm to compute the flow field quantities. b) [8] OR *Q12)*Write short note on (Any three): [16]

- a) Structured Grid Generation.
- b) CFD Simulation process.
- c) Stability criteria.
- d) Finite volume method.

888