Total No. of Questions: 12]	SEAT No.:
P1959	[Total No. of Pages : 3

[4859] - 51

B.E. (Mechanical) (Semester - II) CRYOGENICS ENGINEERING (2008 Pattern) (Open Elective)

Time: 3 Hours] [Max. Marks: 100

Instructions to the candidates:-

- 1) Answer any three questions from each section.
- 2) Answer for the two sections should be written in separate answer book.
- 3) Neat diagrams should be drawn wherever necessary.
- 4) Figures to the right indicate full marks.
- 5) Use of pocket calculator & different gas charts as applicable is allowed.
- 6) Assume suitable data if necessary.

SECTION - I

Unit - I

- Q1) a) Define Cryogenics and discuss how it is different from refrigeration.State important applications of Cryogenics.
 - b) Write a short note on History of Cryogenics. [6]
 - c) What are permanent gases? State boiling points for the gases viz. Helium, Hydrogen, Nitrogen, Oxygen. [6]

OR

- **Q2)** a) Explain with neat sketch Super-fluidity phenomena observed in case of liquid Helium. [6]
 - b) Explain effect of Cryogenic temperature on Thermal properties of material. **[6]**
 - c) Explain the effect of Cryogenic temperature on mechanical strength of materials. [6]

Unit - II

Q3) a) Explain ideal liquefaction system and different parameters used to define the system performance.[6]

	b)	Draw Simple Linde Hampson system and label all the components. [4]
	c)	Explain inversion curve with neat diagram. What is maximum inversion
		temperature? [6]
		OR
Q4)	a)	Why Pre cooling is necessary in case of Precooled Linde Hampson system? [6]
	b)	Compare Isenthalpic and Isentropic expansion methods employed for cooling. [6]
	c)	Discuss how Cryogenic liquefaction system is different from Cryogenic refrigeration system. [4]
		<u>Unit - III</u>
Q5)	a)	State importance of regenerator effectiveness in Stirling cycle refrigerator. [8]
	b)	Explain with neat sketch Philips Refrigerator. [8]
		OR
Q6)	a)	What are the different techniques employed for separating of gases. [8]
	b)	Explain Gifford McMahon Refrigerator with neat sketch. [8]
		SECTION - II
		<u>Unit - IV</u>
Q7)	a)	State various insulations used in Cryogenics in increasing order of performance explain any one. [6]
	b)	Explain with neat sketch principle of rectification column. [10]
		OR
Q8)	a)	Explain the theoretical plate calculations using McCabe-Thiele technique. [8]
	b)	Compare Cryogenic separation with other gas separating methods. [8]
		<u>Unit - V</u>
Q9)	a)	Discuss various methods used to drain liquid from Dewar vessel. [6]
	b)	Explain construction of Dewar vessel with neat sketch stating function of each component. [12]
		OR

Q10)a) Discuss the role of Vacuum in Cryogenic.

[6]

[6]

b) What are the different safety devices installed on a Dewar Vessel. [12]

Unit - VI

- *Q11)*a) Explain the Meissner effect and state its applications.
 - b) What are the different present day applications of Cryogenics in the medical field. [6]
 - c) What are different applications of Cryogenics in the field of Space Technology. [4]

OR

- Q12)a) Explain any two of following present day applications of Cryogenics in the field [10]
 - i) Food preservation.
 - ii) High Energy Physics.
 - iii) Gas industry.
 - b) Explain the Cryogenics principle used in recycling of automobiles tyres.

[6]

