Total No. of Questions: 10]		SEAT No.:	
P2042	[4850] _ 1004	[Total No. of Pages	s : 3

[4859] - 1004 B.E. (Civil)

STRUCTURAL DESIGN OF BRIDGES

(2012 Pattern) (Elective- I)

Time: 2½ Hours | [Max. Marks: 70]

Instructions to the candidates:

- 1) Answer Q.1 or Q.2; Q.3 or Q.4; Q.5 or Q.6; Q.7 or Q.8; and Q.9 or Q.10.
- 2) Figures in bold, to the right indicate full marks.
- 3) IRC: 6, IRC:112, IS 456, IS 800, IS 1343 and Steel table are allowed in the examination.
- 4) Neat diagrams should be drawn wherever necessary.
- 5) If necessary, assume suitable data and indicate clearly.
- 6) Use of electronic pocket calculator is allowed.
- **Q1)** What are IRC loading standards? Explain any one loading case. [10]

OR

Q2) Explain loading standards for railway bridges.

[10]

Q3) What are Pigeaud's curves? Explain in brief.

[10]

OR

- Q4) Show the placing of wheel loads for obtaining maximum bending moment and shear force on an interior panel of a T-beam deck slab bridge for IRC Class 70R and Class A loading.[10]
- **Q5)** Design the members U_2 - U_3 , U_2 - L_2 for the broad gauge railway steel truss bridge shown in fig.1. The details are as follows. [18]
 - a) Weight of stock rail =0.65kN/m,
 - b) Weight of check rail = 0.5kN/m
 - c) Timber sleepers of size = $(0.25 \times 0.25 \times 2.5)$ m@0.45m c/c
 - d) Unit weight of timber = 6.2kN/m³
 - e) Spacing of truss = 6.0 m c/c

- f) Equivalent uniformly distributed load for BM and SF are 3498kN and 3815kN respectively.
- g) CDA = 0.324

Fig. 1

. - · ·

OR

Q6) For the problem given in Q.5 design the members L_2 - L_3 and L_3 - U_2 . [18]

- Q7) Design an elastomeric bearing for the given data and also sketch the details.[16]
 - a) Maximum normal load = 1250 kN.
 - b) Minimum normal load = 400kN
 - c) Lateral load = 35kN
 - d) Longitudinal load =85 kN
 - e) Total longitudinal translation = 10mm
 - f) Rotation at support =0.001
 - g) Shear modulus of elastomer = 1.0 N/mm^2
 - h) Allowable compressive stress for concrete = 8N/mm²
 - i) Allowable compressive stress for elastomer = $9N/mm^2$

OR

Q8) a) What are bearings? Explain the classification of various types of bearings with neat sketches. [8]

[8]

b) Explain the design procedure for rocker bearing.

- **Q9)** a) Explain with neat sketches the different types of piers used for reinforced concrete and steel bridges. [8]
 - b) Explain the loads considered in the design of piers and abutments. [8]

OR

- *Q10*) Design a RC abutment for a RC T-beam deck slab bridge with the following data. [16]
 - a) Span = 15m
 - b) Width of carriageway = 7.5m
 - c) Footpath = 1.5 m on either sides
 - d) Live load on the deck slab =IRC Class A
 - e) Dead weight of span = 4000 kN
 - f) Longitudinal force = 200 kN
 - g) Load on footpath $=5kN/m^2$
 - h) RL of formation = 500.000 m; RL of cg of girder = 499.100 m; RL of center of bearing pin = 498.000 m; RL of bed level = 490.000 m.
 - i) Unit weight of backfill soil = 18kN/m³
 - j) Allowable bearing pressure = 250 kN/m^2
 - k) μ =0.35, Φ =35°, Ground acceleration = 0.1g.
 - 1) Materials = M 30 grade concrete and steel of grade Fe500

