Total	No.	of Questions	:	10]	
--------------	-----	--------------	---	-----	--

SEAT No.:	
-----------	--

[Total No. of Pages: 3

P1871

[4859]-1060 B.E. (I.T.)

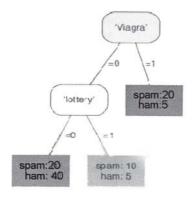
MACHINE LEARNING

(2012 Course) (414455) (End Semester) (Semester-I)

Time: 2¹/₂ Hours] [Max. Marks: 70

Instructions to the candidates:

- 1) Draw neat diagrams wherever necessary.
- 2) Assume suitable data, if necessary.
- 3) Figures to the right indicate full marks.
- **Q1)** a) Explain predictive and descriptive tasks.


[5]

b) Prove with an example **Accuracy = 1-error rate.**

[5]

OR

- **Q2)** a) Define class probability estimator. State mathematical model of class probability estimator. Is that a predictive or descriptive task? Justify. [5]
 - b) What is majority cleass decision rule? Using following feature tree, write decision rules for majority class. [5]

- Q3) a) What is a slack variable? Discuss margin errors. [5]
 - b) Explain ridge regression and lasso.

[5]

OR

Q4) a) Consider the following three-class confusion matrix.

[5]

		Predicted	
	15	2	3
Actual	7	15	8
	2	3	45

Calculate precision and recall per class. Also calculate weighted average precision and recall for the classifier.

b) Explain the term bias-variance dilemma.

- [5]
- Q5) a) Explain with the help of diagrams and equations Minkowski, Euclidean, Manhattan and Hamming distances.[8]
 - b) What is a feature tree? Write the Grow Tree algorithm to generate feature tree. Explain the role of best split in this algorithm. [10]

OR

Q6) a) Explain support and confidence with the help of formulae. Calculate support, and confidence for the following example. [8]

Transaction	Items	
1	nappies	
2	beer, crisps	
3	apples, nappies	
4	beer, crisps, nappies	
5	apples	
6	apples, beer, crisps, nappies	
7	apples, crisps	
8	crisps	

b) Write an algorithm for K-means clustering. Describe its working in brief using example. [10]

Q7) a)	Distinguish between discriminative learning models and generative learning model with suitable examples.		
b)	Define:	[8]	
	1) Bernoulli's distribution.		
	2) Binomial distribution.		
	3) MAP decision rule.		
	4) Maximum likelihood function.		
	OR		
Q8) a)	Write a note on Naïve Bayes Classification algorithm.	[8]	
b)	Explain in brief logistic regression. Compare simple regression regression.	n and logistic [8]	
Q9) a)	Explain reinforcement learning.		
b)	Explain bagging and boosting as ensemble methods.	[8]	
	OR		
Q10) a)	Explain data stream and online learning.	[8]	
b)	Explain multitask learning.	[8]	

....