Total No. of Questions—6]

[Total No. of Printed Pages—3

Seat	
No.	

[4856]-23

F.E. (Second Semester) EXAMINATION, 2015

APPLIED SCIENCE

Paper II

(Physics)

(2008 PATTERN)

Time: Two Hours

Maximum Marks: 50

N.B. := (i) Neat diagrams must be drawn wherever necessary.

- (ii) Figures to the right indicate full marks.
- (iii) Assume suitable data, if necessary.
- (iv) Use of logarithmic tables slide rule, Mollier charts, electronic pocket calculator and steam tables is allowed.

Constants:

Charge on electron $e = 1.6 \times 10^{-19}$ C

Mass of electron $m = 9.1 \times 10^{-31} \text{ kg}$

Planck's const. $h = 6.63 \times 10^{-34} \text{ J.s.}$

- 1. (a) State Heisenberg's Uncertainty principle. Illustrate it with electron diffraction due to single slit. [6]
 - (b) Derive Schrödinger's time independent wave equation. Also write the Schrödinger's time dependent wave equation. [7]
 - (c) An electron is trapped in a rigid box of width 2Å. Find its lowest three permissible energies in eV. [4]

2.	(<i>a</i>)	State de Broglie's hypothesis. Derive the equation for
		de Broglie wavelength in terms of energy and potential
		difference 'V'. [6]
	(<i>b</i>)	Derive the expression for energy and wavefunction of a particle
		trapped in an infinite potential well. Give the graphical
		representation for ψ and $ \psi ^2$. [7]
	(c)	An electron is accelerated through a potential difference of
10 kV. Calculate the de Brogl		10 kV. Calculate the de Broglie wavelength and momentum
		of the electron. [4]
3.	(a)	Explain the construction and working of Ruby laser with neat
		and labelled diagrams. [7]
	(<i>b</i>)	Distinguish between Type I and Type II superconductors. [6]
	(c)	Define: [4]
		(1) Spontaneous emission
		(2) Stimulated emission
		(3) Population inversion
		(4) Pumping.
		Or
4.	(a)	Explain the construction and working of He-Ne laser with neat
		and labelled diagrams. [7]

[4856]-23

	<i>(b)</i>	Explain the terms: [6]	
		(1) Meissner effect	
		(2) Critical magnetic field.	
	(c)	What do you mean by Holography ? Explain the process of	
		construction of Hologram with neat and labelled diagram. [4]	
5.	(a)	(a) Using the Fermi-Dirac probability distribution function, she that the Fermi-level in the intrinsic semiconductor lies at	
		centre of the band gap. [6]	
	(<i>b</i>)	Explain the optical and electrical properties of nanoparticles. [6]	
	(c)	Calculate the number of acceptors to be added to germanium	
	(0)	sample to obtain the resistivity of 10 Ω -cm.	
		Given : $\mu = 1700 \text{ cm}^2/\text{Volt-sec}$. [4]	
		Or	
6.	(a)	Explain the working of P-N junction diode on the basis of	
		energy band diagrams for : [6]	
		(1) Forward bias	
		(2) Reverse bias.	
	(<i>b</i>)	Explain the construction and working of solar cell. Also draw	
		the I-V characteristics of solar cell. [6]	
	(c)	Explain the synthesis of metal nano-particles by colloidal	
	` /	route. [4]	