Seat	
No.	

[4856]-14

F.E. (First Semester) EXAMINATION, 2015 BASIC ELECTRICAL ENGINEERING (2008 PATTERN)

Time: Three Hours

Maximum Marks: 100

- N.B. :— (i) Answer Q. No. 1 or Q. No. 2, Q. No. 3 or Q. No. 4,
 Q. No. 5 or Q. No. 6 from Section I; Q. No. 7 or
 Q. No. 8 Q. No. 9 or Q. No. 10, Q. No. 11 or Q. No. 12 from Section II.
 - (ii) Answers to the two Sections must be written in separate answer-books
 - (iii) Figures to the right indicate full marks.
 - (iv) Neat diagrams must be drawn wherever necessary.
 - (v) Use of non-programmable pocket size scientific calculator is permitted.
 - (vi) Assume suitable additional data, if necessary.

SECTION I

- 1. (a) What is insulation resistance? State its unit and derive expression for insulation resistance of the single core cable. [8]
 - (b) With neat diagram explain construction and working of lead acid cell. [8]

P.T.O.

		Or
2.	(a)	A resistance element having cross sectional area of 10 mm ² and length of 10 m takes a current of 4 amp from 200 V supply at temperature of 25°C. Find:
		Resistivity of material and current it will take when temp. rises to 75°C. Assume $\alpha_{25} = 0.0003$ /°C. [10]
	(<i>b</i>)	State applications of Ni-Iron cell and Nickel-Cadmium cell. [6]
3.	(a)	State and explain Kirchhoff's Laws. [8]
	(<i>b</i>)	Derive formula to convert delta connected network into star connected network. [10]
		Or
4.	(a)	State and explain maximum power transfer theorem with example. [8]
	(<i>b</i>)	State and explain superposition theorem with example. [10]
5.	(a)	Compare electric and magnetic circuits. [8]
	(<i>b</i>)	Derive the equation $L = N^2/S$. Where $L = self$ -induced e.m.f.

(b) Derive the equation $L = N^2/S$. Where L = self-induced e.m.f. of coil; N = no. of turns of coil; S = reluctance of magnetic circuit. [8]

Or

- **6.** (a) Explain what do you mean by statistically induced e.m.f. and dynamically induced e.m.f. [6]
 - (b) A steel ring of 25 cm mean diameter and circular cross section 3 cm diameter has an airgap of 1.5 mm length is wound uniformly with 700 turns of wire carrying a current of 2 amp. Calculate:

(a) MMF

		(d) Relative permeability of steel ring.	[10]
		SECTION II	
7.	(a)	Define with respect to alternating quantities :	[4]
	(==)	(i) Form factor	
		(ii) Crest factor	
	(<i>b</i>)	Sketch waveform of current and find its r.m.s. value and av	erage
		value for the equation:	[12]
		(i) $i_1 = 15 \sin (314.159t)$	
		(ii) $i_2 = 10 \sin (314.159t) - \pi/2$)	
		Or	
8.	(<i>a</i>)	Derive an expression for average value of alternating current	nt. [8]
	(<i>b</i>)	Derive an expression for energy stored in a capacitor	:. [8]
9.	(a)	Define :	
ð.	(a)		
		(i) Admittance	
		(ii) Conductance	
		(iii) Susceptance	• ,
		Express admittance in rectangular and polar form. State of admittance and draw admittance triangle.	[9]
	(<i>b</i>)	A circuit consisting of resistance of 20 Ω and inductan	ice of
		0.1 H is connected in series across single phase, 200 V,	
		supply. Calculate:	[9]
		(i) Impedance	
[485	66]-14	3	P.T.O.

(b) Flux density

(c) Reluctance

- (ii) Current drawn
- (iii) Power consumed
- (iv) Draw phasor diagram.

Or

- 10. (a) If a sinusoidal voltage $v = V_m \sin \omega t$ is applied across R-L series circuit. Derive expression for current and average power consumed by a circuit. Draw waveform of power.[9]
 - (b) Two impedances $Z_1 = 12 + j16 \Omega$ and $Z_2 = 8 j4 \Omega$ are connected in parallel across the voltage of 23 V. Calculate:
 - (i) Total current drawn
 - (ii) Total power
 - (iii) Overall power factor of the circuit

[9]

- **11.** (a) Derive an expression for e.m.f. induced in the transformer. [8]
 - (b) 25 kVA, 50 Hz single phase transformer has an iron loss and full load copper loss of 350 W and 400 W respectively. Find efficiency at 50% of full load at unity power factor. [8]

Or

- **12.** (a) Explain advantages of 3 phase system over single phase system. [6]
 - (b) A balanced star connected load is supplied by 3-phase, 415 V,
 50 Hz supply. Current in phase is 20 A and lags 30° behind phase voltage. Find : [10]
 - (i) Power consumed by load
 - (ii) Circuit parameters
 - (iii) Load power factor.

[4856]-14