Total No. of Questions—8]

[Total No. of Printed Pages—4+1

Seat No.

[4856]-201

F.E. EXAMINATION, 2015

ENGINEERING MATHEMATICS—II

(2012 **PATTERN**)

Time: Two Hours

Maximum Marks: 50

- N.B. :— (i) Attempt four questions : Q. No. 1 or Q. No. 2,
 Q. No. 3 or Q. No. 4, Q. No. 5 or Q. No. 6,
 Q. No. 7 or Q. No. 8.
 - (ii) Neat diagrams must be drawn wherever necessary.
 - (iii) Figures to the right indicate full marks.
 - (iv) Use of electronic non-programmable calculator is allowed.
 - (v) Assume suitable data wherever necessary.
- **1.** (a) Solve the following differential equations: [8]

$$(i) xy \frac{dy}{dx} = \left(1 - x^2\right) \left(1 + y^2\right)$$

(ii)
$$\cos y - x \sin y \frac{dy}{dx} = \sec^2 x$$
.

(b) An e.m.f. $200e^{-5t}$ is applied to a series circuit containing of 20 ohm resistor and 0.01 F capacitor. Find the charge and current at any time assuming that there is no initial charge on the capacitor. [4]

2. (a) Solve: [4]

$$2y dx + (2x \log x - xy) dy = 0.$$

- (b) Solve the following: [8]
 - (i) A body starts moving from rest is opposed by a force per unit mass of value cx and resistance per unit mass of value bv^2 , where x and v are the displacement and velocity of the body at that instant. Show that the velocity of the body is given by :

$$v^2 = \frac{c}{2b^2} \left(1 - e^{-2bx} \right) - \frac{cx}{b}.$$

- (ii) The inner and outer surfaces of a spherical shell are maintained at T_0 and T_1 temperature respectively. If the inner and outer radii of the shell are r_0 and r_1 respectively and thermal conductivity of the shell is k, find the amount of heat loss from the shell per unit time. Find also the temperature distribution through the shell.
- **3.** (a) Obtain the first three coefficient in the Fourier cosine series for y using practical harmonic analysis: [5]

\boldsymbol{x}	y
0	4
1	8
2	15
3	7
4	6
5	2

(b) Evaluate: [3]

$$\int_{3}^{5} (x-3)^{1/2} (5-x)^{1/2} dx.$$

(c) Trace the following curve (any one): [4]

- $(i) \qquad ay^2 = x^2(a x)$
- (ii) $r = \alpha(1 + \cos \theta)$.

Or

4. (a) If [4]

$$I_n = \int_{0}^{\pi/2} x^n \cos x \ dx$$

prove that:

$$I_n = \left(\frac{\pi}{2}\right)^n - n(n-1)I_{n-2}.$$

(b) Show that: [4]

$$\int_{0}^{\infty} e^{-x^{2}-2bx} dx = \frac{\sqrt{\pi}}{2} e^{b^{2}} \left[1 - erf(b)\right].$$

- (c) Find the arc length of the curve (using rectification) $r = 2a \cos \theta.$ [4]
- 5. (a) Find the equation of the sphere which passes through the point (3, 1, 2) and meets X o Y plane in a circle of radius 3 units with centre at (1, -2, 0). [5]

[4856]-201 3 P.T.O.

- (b) Find the equation of right circular cone whose vertex is at the origin with axis $\frac{x}{1} = \frac{y}{2} = \frac{z}{3}$ and has a semi-vertical angle 30°. [4]
- (c) Find the equation of right circular cylinder of radius 2 whose axis passes through (1, 2, 3) and has direction cosines proportional to 2, 1, 2. [4]

Or

- **6.** (a) Find the equation of the sphere passing through the circle $x^2 + y^2 + z^2 = 9$, 2x + 3y + 4z = 5 and the point (1, 2, 3).
 - (b) Find the equation of right circular cone whose vertex is (1, -1, 1) and axis is parallel to $x = \frac{-y}{2} = -z$ and one of its generators has direction cosines proportional to (2, 2, 1). [4]
 - (c) Find the equation of right circular cylinder of radius 4 with axis passing through origin and making equal angles with the co-ordinate axes. [4]
- **7.** Attempt any *two* of the following:

$$\int_{0}^{1} dx \int_{1}^{\infty} e^{-y} y^{x} \log y \, dy.$$

[4856]-201

(b) Evaluate: [7]

$$\iiint (x^2y^2 + y^2z^2 + z^2x^2) dx dy dz$$

throughout the volume of the sphere $x^2 + y^2 + z^2 = a^2$.

(c) Find the moment of inertia of one loop of the lemniscate $r^2 = a^2 \cos 2\theta$ about initial line. [6]

Or

- **8.** Attempt any two of the following:
 - (a) Evaluate: [7]

$$\int_{0}^{a} \int_{0}^{\sqrt{a^{2}-x^{2}}} \sin \left\{ \frac{\pi}{a^{2}} \left(a^{2}-x^{2}-y^{2} \right) \right\} dx dy.$$

(b) Evaluate: [6]

$$\int_{0}^{\infty} \int_{0}^{\infty} \int_{0}^{\infty} \frac{dx \, dy \, dz}{\left(1 + x^{2} + y^{2} + z^{2}\right)^{2}}.$$

(c) Find the C.G. of the loop of the curve : [6] $y^2(a + x) = x^2(a - x).$