Total No. of Questions—8]

[Total No. of Printed Pages—4

Seat	
No.	

[4856]-202

F.E. EXAMINATION, 2015 ENGINEERING PHYSICS (2012 PATTERN)

Time: Two Hours

Maximum Marks: 50

- **N.B.** :— (i) Neat diagrams must be drawn wherever necessary.
 - (ii) Figures to the right indicate full marks.
 - (iii) Use of logarithmic tables, slide rule, Mollier charts, electronic pocket calculator and steam tables is allowed.
 - (iv) Assume suitable data, if necessary.
 - (v) All questions are compulsory.

Constants:

$$h = 6.63 \times 10^{-34} \text{ J.sec}$$

$$e = 1.6 \times 10^{-19} \text{ C}$$

$$m_e = 9.1 \times 10^{-31} \text{ kg}$$

$$c = 3 \times 10^8 \text{ m/s}.$$

- 1. (a) Prove that in Newton's rings by reflected light the diameter of dark ring is proportional to square root of a natural number. [6]
 - (b) Explain any two factors affecting the acoustics of a hall and remedies on that. [3]
 - (c) The classroom has dimension, $20 \times 15 \times 5$ m³. The reverberation time is 3.5 sec. Calculate the total absorption of its surface and the average absorption. [3]

- 2. (a) Explain piezoelectric effect. Explain how piezoelectric oscillator is used to produce ultrasonic waves, with the help of a neat circuit diagram. [6]
 - (b) The resultant amplitude of a wave when monochromatic light is diffracted from a single slit is $E_{\theta} = E_m \frac{\sin \alpha}{\alpha}$. Then derive the condition of minima. [3]
 - (c) A soap film having refractive index 1.33, and thickness 5×10^{-5} cm is viewed at an angle of 35° to the normal. Find the wavelengths of light in the visible spectrum which will be absent from the reflected light. [3]
- **3.** (a) Explain construction and working of Ruby Laser with the help of energy level diagram. [6]
 - (b) What is Fermi level? Explain Fermi-Dirac probability distribution function. [3]
 - (c) Plane polarized light of wavelength 5 × 10⁻⁵ cm is incident on a piece of quarter cut parallel to the optic axis. Find the least thickness of quarter for which the O-ray and E-ray combine to form plane polarized light.

Given : $\mu_0 = 1.5442$, $\mu_e = 1.5633$.

Or

4. (a) Explain Hall effect. Derive the equation of Hall voltage and Hall coefficient. [6]

[4856]-202

	sample to	obtain the	resistivity	of 20 Ω	cm.	[3]
	Given :					
		$\mu = 17$	$00 \text{ cm}^2/\text{V.s}$	ec.		
5. (u) Deduce Sch	nrodinger's	time inde	oendent wa	ave equatio	n. [6]
) Define pha	Define phase (wave) velocity. Show that the phase velocity				
	of matter	wave is g	reater than	the velo	city of ligh	it. [4]
(e) Calculate t	electron of	energy			
	1 keV.					[3]
			Or			
6. (t) State Heise:	_	_	-		_
	experiment	of electro	n diffractio	on at a si	ngle slit.	[6]
()	o) What is wa	ve function	? Explain	what is no	rmalization	of wave
	function.					[4]
(The lowest	energy of	an electro	n trapped	in a rigid	box is
	4.19 eV. F	ind the w	idth of the	e box in A	A.U.	[3]
= () II 1 :					[0]
7. (t) Explain :	C 11				[6]
	(i) Critical					
	(ii) Meissne	er effect.				
(o) Explain an	y <i>two</i> proj	perties of	nano-partic	eles in brie	f. [4]
(e) Explain th	ne applica	tions of r	ano-partio	cles in ele	ectronic
	industry.					[3]
[4856]-2	202		3			P.T.O.

Calculate the number of acceptors to be added to a germanium

[3]

(*b*)

(c)

State and prove Malus law.

8.	(a)	Explain the synthesis of nano-particles by chemical metho	d in
		colloidal form with diagram and example.	[6]
	(<i>b</i>)	Explain in brief the BCS theory of superconductivity.	[4]
	(c)	Give any six applications of superconductivity.	[3]