Iotal No. of Questions: 6]	SEAT No.:
P3976	[Total No. of Pages : 2

[4860] - 46

M.E. (Civil) (Structures)

FINITE ELEMENT METHODS

(2008 Pattern) (Semester - II)

Time: 4 Hours] [Max. Marks: 100

Instructions to the candidates:

- 1) Answer any two questions from each section.
- 2) Answer to the two sections should be written in separate books.
- 3) Figures to the right indicate full marks.
- 4) Neat diagrams must be drawn wherever necessary.
- 5) Use of non programmable calculator is allowed.
- 6) Assume suitable data, if necessary.

SECTION-I

- Q1) a) Derive element stiffness matrix for one dimensional bar element in local coordinate system by using [15]
 - i) Direct stiffness method and
 - ii) Principle of minimum potential energy.
 - b) Explain step by step procedure of finite element analysis. [5]
 - c) Explain variational methods and their applications in finite element analysis. [5]
- **Q2)** a) Determine shape function for a CST element. Prove that the natural co-ordinates are nothing but are co-ordinates for CST element of 2D problem. [15]
 - b) State and explain 'Convergence Requirements of displacement function'.
 - c) Give three dimensional Pascal's triangle. Explain its use in FEM analysis. [5]

Q3) a) A six noded rectangular element has 4 corner nodes and one node at the centre of the two edges parallel to x axis. The other two edges are parallel to y axis. Obtain the six shape functions using Lagrange interpolation.

[12]

b) Explain the isoparametric concept and types of isoparametric elements in finite element analysis. Discuss their advantages over other elements.

[8]

c) What do you mean by higher order elements? Explain its applications with examples. [5]

SECTION-II

- **Q4)** a) Obtain element stiffness matrix of axisymmetric ring element with a triangular cross section using cylindrical coordinates. [18]
 - b) Explain the method of finding shape function for a hexahedral element using natural coordinates. [7]
- **Q5)** a) What do you understand by C⁰, C¹ and C² continuity? Explain with suitable examples. [7]
 - b) Write displacement functions for both ACM and BFS elements. Verify conformity of both the elements. [18]
- **Q6)** a) Explain the concept of degenerated solid elements by suitable examples. [7]
 - b) Explain method of obtaining geometry shape functions and displacement functions for Pawsey's eight noded shell element. [18]

