Total No. of Questions : 6]	SEAT No.:
P3979	[Total No. of Pages : 2

[4860] - 51

M.E. (Civil) (Structures) (Semester - II) NON-LINEAR ANALYSIS OF STRUCTURES

(Elective - III (d)) (2008 Pattern)

Time: 4 Hours [Max. Marks: 100

Instructions to the candidates:

- 1) Answer any two questions from each section.
- 2) Answer to the two sections should be written in separate books.
- 3) Figures to the right indicate full marks.
- 4) Neat diagrams must be drawn wherever necessary.
- 5) Use of non programmable calculator is allowed.
- 6) Assume suitable data, if necessary.

SECTION-I

- **Q1)** a) Find approximate solution for a moment-slope non linear analysis of a cantilever beam with point load at the free end. Plot load-deflection curves.
 - b) Derive the governing nonlinear equation for a moderately thick beam due to stretching. [13]
- **Q2)** a) Explain 'Displacement Equations Approach' of nonlinear analysis of plates. [8]
 - b) Write the strain energies due to stretching, bending and kinetic energy of an orthotropic plate. Use Hamilton's principle and stress function approach to derive governing equations. [17]
- Q3) a) State and explain different boundary conditions for the nonlinear analysis of plates obtained from variational technique. [13]
 - b) State a system of four equations governing the large amplitude flexural vibrations of anisotropic plates. [12]

SECTION-II

- Q4) Obtain approximate solutions for the tip deflection components of cantilever column at post-buckling stage due non linear behaviour considering moment curvature relationship.[25]
- **Q5)** a) Explain with diagrams and derivation, the deformation of square pinned-fixed frame for tensile loading. [15]
 - b) For a two-node truss element, develop the tangent stiffness matrix and force vector corresponding to the configuration at time t. Consider large displacement and large strain conditions. [10]
- **Q6)** a) Obtain the displacement transformation matrix for a member with a hinge. [12]
 - b) Write procedure for elastic plastic analysis of [13]
 - i) Frames.
 - ii) Propped cantilever.

