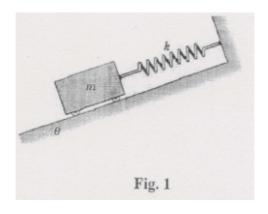
Total No. of Questions : 6]	SEAT No.:
D 4 0 = 0	

P3970 [Total No. of Pages : 3

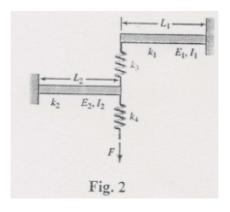
[4860] - 36

M.E. (Civil) (Structures) STRUCTURAL DYNAMICS

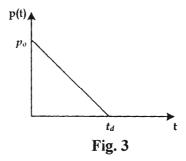
(2008 Pattern)


Time: 4 Hours] [Max. Marks: 100

Instructions to the candidates:


- 1) Answer any two questions from each section.
- 2) Answers to the two sections should be written in separate answer books.
- 3) Figures in bold to the right, indicate full marks.
- 4) If necessary, assume suitable data and indicate clearly.
- 5) Use of electronic pocket calculator is allowed.

SECTION-I


- **Q1)** a) What is damping? Explain the various types of damping with suitable examples. [5]
 - b) Derive the expression for logarithmic decrement. [10]
 - c) Prove that the natural frequency of oscillation for the mass m shown in Fig. 1 is independent of θ . [10]

Q2) a) For the two cantilever beams whose free ends are connected to springs as shown in Fig. 2, determine the equivalent spring constant k_e for the system.

- b) A wide-base truck tire is characterized with a stiffness of 1.23 X 10⁶ N/m, an undamped natural frequency of 30Hz, and a damping coefficient of 4400 Ns/m. In the absence of forcing, determine the response of the system assuming non-zero initial conditions, evaluate the damped natural frequency of the system and discuss the nature of the response. [10]
- c) Explain equivalent spring constant with suitable example. [5]
- Q3) a) Use the Duhamel integral to determine the response of an undamped SDOF system to a loading specified by the triangular pulse as shown in Fig. 3. Obtain the expressions that are valid for t td. The system is initially at rest. [15]

b) Find the total response of a single degree of freedom system with m = 10 kg, c = 20 Ns/m, k = 4,000 N/m. The initial conditions are $x_0 = 0.01$ m, $\dot{x} = 0$, $F_0 = 100$ N and $\omega = 10$ rad/s. [10]

SECTION-II

Q4) a) Explain orthogonality of modes.

[10]

b) Find the natural frequencies and mode shapes of a spring-mass shown in Fig. 4. [15]

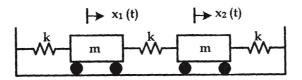


Fig. 4

Q5) a) Write a note on constant acceleration method.

[15]

- b) What are shear buildings? Explain the governing equation of motion for a three storey shear building. [10]
- **Q6)** a) Derive Rayleigh's quotient for a continuous system. [10]
 - b) Find the natural frequency and the free vibration solution of a bar fixed at one end and free at the other. [15]

