Total No. of Questions: 8]

| SEAT No.: |  |
|-----------|--|
|-----------|--|

[Total No. of Pages: 4

P4460

# [4860]-34

## .

## M.E. (Civil/Structures)

## **STRUCTURAL MATHEMATICS**

(2008 Course) (Semester-I) (501401)

Time: 4 Hours] [Max. Marks: 100

Instructions to the candidates:

- 1) Attempt three questions from section-I and three questions from section-II.
- 2) Answers to the two Sections should be written in separate books.
- 3) Neat diagrams must be drawn wherever necessary.
- 4) Figures to the right indicate full marks.
- 5) Use of non programmable electronic calculator is allowed.
- 6) Assume suitable data, if necessary.

#### **SECTION-I**

**Q1)** a) Using Flexibility method, analyze the beam shown.

[12]



- Fig.1.a
- b) Discuss the concept of banded matrix. Explain the band width and half band width of stiffness matrix with a suitable example. [5]
- Q2) a) A 2.4 m long boom is held by ball and socket joint at A and by two cables BD and CD as shown in the Fig. 2a, find the displacement of joint D if weight of 380 N is attached at D. Use stiffness method.



Fig. 2.a

b) Estimate the lowest buckling load of a uniform pin ended column of length L and flexural rigidity EI using Eigen value technique. Divide the column in three equal parts. [5]

- Q3) a) For a space frame member, develop the member stiffness matrix with proper sketches.[8]
  - b) Derive the transformation matrix for the grid member. [8]
- **Q4)** a) Using Euler's method, find an approximate value of y when x = 0.3, given that dy/dx = 2xy and y = 0.5 when x = 0. Take h = 0.1.
  - b) Solve the pair of simultaneous equations [9]

$$dy_1 / dx = y_2, y_1(0) = 1$$

$$dy_2 / dx = y_1 * y_2 + x^2 + 1, y_2(0) = 0$$

Estimate the values of  $y_1(0.2)$  and  $y_2(0.2)$ .

#### **SECTION-II**

Q5) a) A fixed beam of variable flexural rigidity supports a concentrated load
W as shown in Fig. 5a. Estimate the deflection under the load considering
three sub intervals of the beam. Use finite difference method.



Fig. 5.a

b) A simply supported uniform rectangular plate of size 3m by 6m supports a uniformly distributed load of intensity 500 kN/m<sup>2</sup> over one half of the plate as shown in Fig. 5b. Estimate the deflections at the interior nodes, assuming the thickness of the plate t = 50 mm, Poisson's ratio = 0.25 and Modulus of elasticity  $E = 2 \times 10^5$  N/mm<sup>2</sup>. Divide the plate into  $2 \times 4$  mesh. Use finite difference method.



Q6) a) Values of y are given at values of x as shown below.

| х | 1.0  | 1.5  | 4.0  | 6.0  |
|---|------|------|------|------|
| y | 16.0 | 22.5 | 40.0 | 36.0 |

Calculate the value of y at x = 4.5 using Lagrange interpolation Technique.

[10]

b) What do you understand by Spline interpolation? What are cubic splines? State the conditions for a spline to be cubic. [7]

**Q7)** a) With a schematic diagram show the coefficients of different operators for the second order, third order and fourth order central differences.

[5]

b) The data given in table, fit a formula of the type  $y = a x^n$ . Find the values of a and n and hence the required formula. [11]

| x | 10   | 20   | 30   | 40   | 50   | 60   | 70   | 80   |
|---|------|------|------|------|------|------|------|------|
| y | 1.06 | 1.33 | 1.52 | 1.68 | 1.81 | 1.91 | 2.01 | 2.11 |

- **Q8)** a) Compute the Integral  $\int_{2}^{5} (1+x^4)dx$  using Gaussian three point formula. Compare it with Simpson's  $3/8^{th}$  rule by taking h = 1. [8]
  - b) A beam 9 m long simply supported at its ends supports uniformly distributed load of 4 kN/m over the entire length. Find a Fourier expression for the load. Calculate the deflection and bending moment at its centre.

[8]

....