Total No.	of Questions	: 8]
-----------	--------------	------

SEAT No.:		
[Total	No. of Pages	:2

P4417 [4860]-1034

M.E. (Civil) (Structures)

ADVANCED DESIGN OF CONCRETE STRUCTURES (2013 Credit Pattern) (Semester -II)

Time: 3 Hours] [Max. Marks: 50

Instructions to the candidates:

- 1) Answer any five questions.
- 2) Answers should be written in same book.
- 3) Figures to the right indicate full marks.
- 4) Use of IS 456, IS 1343, IS 1893, IS 3370 & non programmable calculator is allowed.
- 5) Neat diagrams must be drawn wherever necessary.
- 6) Assume any other data if necessary.
- **Q1)** a) Write short note with sketches on Characteristics of yield lines. [4]
 - b) Draw yield line patterns for the following

[6]

- i) Rectangular slab with fixed at supports on three sides with shorter side simply supported.
- ii) Equilateral triangular slab fixed at two sides, unsupported at third side.
- **Q2)** Design a RCC slab for a square hall of clear dimensions $5 \times 5m$ using Yield Line Theory. Assume the peripheral support thickness 300mm, the slab is simply supported. Use M25 Fe 500 take Live load = $4.5 \text{ kN/m}^2 \& \text{floor finish load} = 1.5 \text{ kN/m}^2$. Draw details of reinforcement.
- **Q3)** Design a grid slab for a floor of hall 10.5×13.5 m c/c having square grid of 1.5m. Use M 20 Fe500 take Live load = 5 kN/m² & floor finish load = 1.5 kN/m². Apply the required check & draw reinforcement details. [10]
- **Q4)** Design a flat slab for a hall with column spacing $6m \times 6m$ c/c the size of the column diameter is 500mm each. Use M20 Fe500 take Live load = 4.5 kN/m^2 & floor finish load = 0.9 kN/m^2 . Draw details of reinforcement. [10]

Q5) Design a staging for circular type ESR for 2.0 lakh liters with staging height 9m using M25, Fe500 in earthquake zone lll. Safe bearing capacity is 200kN/m².Design of Container is not required. Assume approx dimension of container, wall, top, bottom slab thickness, beams sizes & number of columns. Design must include calculations of vertical loads and horizontal force calculations. Design the bracings and columns. Draw the reinforcement details.

[10]

- **Q6)** Design a circular bunker to store 50 tonnes of coal for the following. Density of cement = 16 kN/m^2 , Angle of repose = 29° . Use M25 & TMT steel. Draw the details of reinforcement in side wall and hopper. [10]
- Q7) Design Raft foundation for the following

[10]

Centre to centre distance of column in both directions = 2.4m, Column size = $300 \times 300mm$, working axial load on each column = 600kN. The depth of the strata = 1.8m. Use M25 & Fe500. The safe bearing capacity of the strata = $90kN/m^2$. Show all Analysis and Design calculations & draw the reinforcement details.

Q8) a) Write detailed note on flanged shear wall.

[5]

b) Write detailed note on design of formwork for box girder.

[5]

 \Diamond \Diamond \Diamond