Total No. of Questions: 8]	SEAT No. :
P4569	[Total No. of Pages : 2

[4860] - 1028

M.E. (Civil - Structures) (Semester - I) ADVANCED MECHANICS OF SOLIDS (2013 Credit Pattern)

Time: 3 Hours] [Max. Marks: 50

Instructions to the candidates:

- 1) Attempt any five questions from the following.
- 2) Neat diagram must be drawn wherever necessary.
- 3) Figure to the right indicates full marks.
- 4) Assume suitable data, if necessary and clearly state.
- 5) Use of cell phone is prohibited in the examination hall.
- 6) Use of electronic pocket calculator is allowed.
- **Q1)** a) With neat sketch, show all the rectangular components on an element in a stress elastic body. Hence obtain differential equation of equilibrium.[4]
 - b) A plane passing through a point (x, y, z) in a stressed elastic body has its normal n with direction cosine cos(n, x), cos (n, y) and cos(n, z). Obtain expression for the resultant stress (T_n) and its direction in terms of the six independent stress components at the points. [6]
- Q2) a) Define Airy's stress function. Prove that the stress function ϕ satisfying the governing equation $\nabla^4 \phi = 0$, when the body force is absent. [7]
 - b) State and explain generalised Hook's law. [3]
- Q3) a) Obtain differential equation of equilibrium of plane elasticity problem in polar co ordinate with usual notation. [6]
 - b) Obtain strain displacement relationship for the six independent strain components in an elastic body. [4]

- **Q4)** a) Derive an expression for radial (σ_r) and tangential (σ_t) stresses for thick cylinder of internal radius (r_i) and external radius (r_0) subjected to internal pressure (p_i) .
 - b) Obtain Naviers and Lames equations of equilibrium. [5]
- **Q5)** a) Determine the numerical value of the ratio $\sigma_{\text{max}}/\sigma_{\text{min}}$ for the case of pure bending of a curved beam in elevation having rectangular cross section of 25 mm × 25 mm if the radius of curvature of the centroidal axis is 37.5 mm.[5]
 - b) Analysis the simply supported semicircular beams of radius r curved in Plan, subjected to uniformly distributed load w, supported on three equally spaced columns. [5]
- **Q6)** a) Derive an expression, $\sigma = \frac{My}{A\overline{y}(r-y)}$ for bending stress of a curved beam in elevation with usual notation. [5]
 - b) Derive an expression for defection at free end for a cantilever quarter circle curved beam of radius r in plan subjected to point load W at the free with usual notation. [5]
- Q7) a) State and explain in brief St. Venant's theory of torsion. [4]
 - b) Assuming proper stress function for a bar of equilateral triangular cross section subjected to torque T, determine the maximum shear stress and its location. [6]
- **Q8)** a) Find differential equation for beam on elastic foundation subjected to downward uniformly varying load (w) per unit distance and to an upward force of ky per unit distance, where k is the stiffness modulus of the elastic foundation. [5]
 - b) An infinite elastic beam is subjected to uniformly distributed load on finite length. Obtain slope, deflection. Moment and shear. [5]

