SEAT No. :	
------------	--

P4234

[4860]-618

[Total No. of Pages :4

M.E. (Civil) (Water Resource and Environmental Engineering) DAM ENGINEERING

(2012 Pattern) (Semester - II) (Elective -IV) (501612)

Time: 3 Hours] [Max. Marks:100

Instructions to the candidates:

- 1) Solve Q.1 or Q.2, Q.3 or Q.4, Q.5 or Q.6 from section I.
- 2) Solve Q.7 or Q.8, Q.9 or Q.10, Q.11 or Q.12 from section II.
- 3) Answer any 3 questions from each section.
- 4) Answers to the two sections should be written in separate books.
- 5) Neat diagrams must be drawn wherever necessary.
- 6) Figures to the right indicate full marks.
- 7) Use of logarithmic tables, slide rule, Mollier charts, electronic pocket calculator and steam tables is allowed.
- 8) Assume suitable data, if necessary.

SECTION-I

- **Q1)** a) Calculate the maximum and minimum normal stress intensities at the base of the dam section shown in fig-1 when the reservoir is
 - i) empty and
 - ii) full.

Neglect earthquake effect. Also calculate sliding factor and shear friction factor of safety. Assume shear strength 35 kg/sq. cm, coefficient of friction μ as 0.75 and weight of concrete 2400 kg/m³. [10]

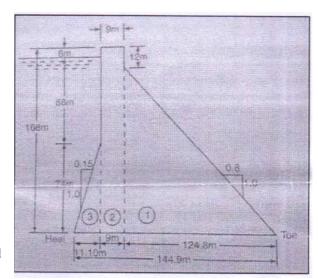


Fig-1

- b) What is an elementary profile of a gravity dam? Explain how it is different from practical profile. [4]
- c) Write short note on construction and contraction joints in gravity dam.[4]

OR

- **Q2)** a) Write short note on earthquake pressure in gravity dams. Explain in detail effect of horizontal and vertical acceleration. [8]
 - b) Mention the various forces acting on a gravity dam. How are they determined? [6]
 - c) What are the different methods of stability analysis of gravity dam? Explain analytical method in detail. [4]
- Q3) a) What are salient features of an arch dam and different types of arch dam? Derive an equation for best central angle of arch dam. [10]
 - b) Explain the design criteria for arch dam.

[6]

OR

- **Q4)** a) What are the different methods of design of an arch dam? Explain thin cylinder theory in detail. [10]
 - b) What are the limitations of thin cylinder theory? [6]
- Q5) a) Draw a typical section of an earth dam and explain the functions performed by each component.[8]
 - b) A homogeneous earth dam has a section as shown in fig -2. It is provided with a horizontal filter 20 m long on the D/S side. Draw the base parabola and indicate the adjustments required to obtain phreatic line from it. [8]

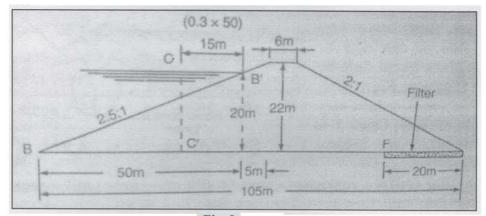
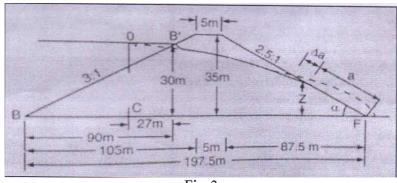



Fig-2

Q6) a) Calculate the seepage per meter length through the body of the dam section shown in fig-3. Assume coefficient of permeability $K = 8 \times 10^{-4}$ cm/sec.

- Fig-3
- b) Draw sketches of earth dam cross-sections for the following three cases, when both pervious and impervious materials are available in the field. [8]
 - i) Impervious foundation to a large depth.
 - ii) Pervious foundation to some depth and then impervious material downwards.
 - iii) Pervious foundation to a large depth.

SECTION-II

- **Q7)** a) Explain the various types of rockfill dams and draw the sketches for each of them. [10]
 - b) What are the various methods of construction of rockfill dams? Explain any one in detail. [8]

OR

- **Q8)** a) Explain the concept and design of Buttress dam. Also discuss the merits and demerits of buttress dam over gravity dam. [10]
 - b) Draw plan and an elevation of a flat slab deck type buttress dam and describe the important features of the same. [8]

	i)	Maximum design flood = 1200 cumec.	
	ii)	Average river bed level = 0 m .	
	iii)	R.L. of crest of spillway = 101.00 m .	
	iv)	Slope of crest of spillway = $0.7H : 1V$.	
	v)	Width of pier = 2.0 m .	
	vi)	Maximum allowable water level during flood = 105.00 m.	
		sume number of span as 7, clear way of each span as 10.0m at $= 0.1$, $\text{Kp} = 0.01$.	ınd
b)	Exp	plain energy dissipation arrangement for the following two cases:	[6]
	i)	T.W.C. coincides H.J.C.	
	ii)	T.W.C. always above H.J.C.	
		OR	
Q10) a)		escribe Indian Standard practice for design of horizontal apron stilling asin for a dam spillway. [8]	
b)	Des	scribe the Creager's method of designing profile of a overflow spillw	ay. [8]
<i>Q11)</i> a)	Exp	plain with neat sketches:	[8]
	i)	Remiolds automatic gate	
	ii)	Visvesvaraiya's gate	
b)	Wh	at are the advantages of gated spillway.	[8]
		OR	
<i>Q12)</i> a)	Exp	plain with neat sketches:	[8]
	i)	Drum gate	
	ii)	Stoney gate	
b)		at are sluices? What functions they serve? Describe Dharwar a gam type briefly with the help of sketches.	and [8]
		$\mathcal{E}\mathcal{E}\mathcal{E}$	

Q9) a) Design an Ogee shape gated spillway for the following data:

[10]