Total No.	of Questions	:10]
-----------	--------------	------

Total No. of Questions :10]		SEAT No.:
P4233	[40/0] /17 4	[Total No. of Pages :4

M.E. (Civil) (Water Resources and Environmental Engineering)

[4860]-617-A

INDUSTRIAL WASTE MANAGEMENT

(2012 Course) (Semester - II) (Elective -III) (501611)

Time: 3 Hours] [Max. Marks:100

Instructions to the candidates:

- Answers to the two sections should be written in separate answer books.
- *2*) Attempt any three questions from each sections.
- Neat diagrams must be drawn wherever necessary. 3)
- Figures to the right side indicate full marks. 4)
- Use of calculator is allowed. *5*)
- Assume suitable data, if necessary. *6*)
- *7*) Use data sheet.

SECTION-I

- Explain physical, chemical & biological characteristics of industrial waste **Q1)** a) water. [8]
 - The cumulative flow of waste water (W.W.) reaching to CETP in a day b) varies as shown in table No.1 Determine the capacity of equalization tank for given flow variations. Plot graph of time Vs Cumulative flow.[8] Table No.1 Data for finding capacity of equalization tank

Time Hr.	0	2	4	6	8	10	12	14	16	18	20	22	24
Cumulative	0	25	50	75	100	110	130	140	150	165	170	198	220
flow m ³													

Q2) a) Explain grab and composite sampling technique. [8]

Explain techniques for reduction of waste. b)

[8]

Q3) a) Plot the BOD curve and calculate Kt & Lt for the following data. [8]

Time days	2	4	6	8	10
BOD mg/L	10	20	23	25	30

b) Explain the concept of self purification of stream.

[8]

Q4) a) Explain different methods for removal of TDS.

[8]

- b) Design an aerobic sludge digester for Industrial waste water of 10 MLD, quantity of sludge produced = 2000 kg/d, Sp. Gravity = 1.003, Solid concentration = 3.5%, HRT = 15 days, Volatile solids = 80% Find: [8]
 - i) Volume of sludge digested per day.
 - ii) Volume of sludge digester.
 - iii) Oxygen required take oxygen requirement as 2 kg/kg-d of volatile solid cell oxidized and 40% cell destroyed.
 - iv) Volume of air supplied 1.20 x 0.21 kg/m³.
- **Q5)** a) The BOD of industrial W.W. for 1 day at 30°C has been found to be 110 mg/L. What will be the 5 day BOD at 20°C. Take $K_D(20^{\circ}C) = 0.1$. [9]
 - b) Explain the concept of anaerobic sludge digestion with three phases such as hydrolysis, acidogensis, methonagesis and also explain conventional sludge digester with diagram. [9]

SECTION-II

- Q6) a) The treated W.W. with flow of 2000 L/min is to be treated with PAC to reduced concentration of total organic nitrogen from 5 mg/L to 1 mg/L. The removal follows Freundlich adsorption isotherm in which capacity factor and intensity parameter are 160 mg/gm (L/mg)^{1/n} & 0.5 respectively. Determine PAC dose, PAC requirement and annual cost of PAC. Assume PAC cost to be Rs. 50/- per kg.
 - b) Explain operation and maintenance problem of CETP.

- **Q7)** a) Draw a flow diagram for treating W.W. of dairy industry & show all treatment unit. [8]
 - b) Draw a flow diagram for treating W.W. of textile industry and show all treatment unit. [8]
- **Q8)** a) Explain the electro dialysis process and determine power required for electro dialysis process for the following data: [8]
 - i) $Q = 4000 \text{ m}^3/\text{d}$,
 - ii) TDS = 2000 mg/L,
 - iii) No. of Cells = 300
 - iv) Cation and anions concentration = 0.011 Eq/L,
 - v) Salt removal Efficiency = 50%, Current efficiency = 90%., R = 50 ohm. Use data sheet if required.
 - b) Explain importance of treatability index in waste water treatment. [8]
- **Q9)** a) Explain the characteristics of sugar industrial waste with value and state disposal method of industrial treated waste with flow diagram. [8]
 - b) Write short note on water pollution act 1978. [8]

[9]

- *Q10*)a) Design CETP for following data
 - i) $Q = 150 \text{ m}^3/\text{d}$,
 - ii) pH = 11 12,
 - iii) BOD at 27° C = 70 mg/L
 - iv) TDS = 3000 mg/L
 - v) TS = 6000 mg/L
 - vi) Iron concentration = 700 mg/L
 - vii) COD = 5000 mg/L at $27^{\circ}C$

Find:

- 1) Volume of sedimentaion tank
- 2) Acid required for neutralization if 3 lit acid required for 1 m³/d of E/F pH.
- 3) Quantity of time required for removal of Iron take lime consumption as 1mg/L of Iron required 0.5 mg/L of lime.

[9]

- 4) Select suitable method for removal of COD and BOD.
- 5) F/M ratio
- b) Write short note on hazardous waste management.

888