Total No. of Questions: 8]	SEAT No.:
P4581	[Total No. of Pages : 2

[4860]-1052

M.E. (Civil) (Water Resources and Environmental Engg.) OPEN CHANNEL HYDRAULICS (2013 Credit Pattern)

Time: 3 Hours] [Max. Marks: 50

Instructions to the candidates:

- 1) Answer any five questions.
- 2) Neat diagrams must be drawn wherever necessary.
- 3) Figures to the right indicate full marks.
- 4) Use of logarithmic tables, slide rule, electronics pocket calculator is allowed.
- 5) Assume suitable data if necessary.
- Q1) a) Show that maximum velocity in a circular channel happens when y/D=0.81.
 - b) Explain the characteristics of M₁ profile and state one example of its occurrence. [4]
- Q2) a) Derive Chezy's formula. Also derive relation between Chezy's 'C' and Manning's 'n'.[5]
 - b) Explain method of direct integration for gradually varied profile computation. [5]
- Q3) a) Classify hydraulic jump using the Froud No. Draw the sketch of each jump and state the energy dissipation possible.[4]
 - b) A triangular channel has a side slope of 1:1 and longitudinal slope of 1/1000. Determine whether the channel is mild, steep or critical when discharge of 0.25m³/s flows through it. Take Manning's n = 0.0 15. Also state for which range of depths the flow will be in Zone 1, Zone 2 and Zone3.

Q4)	a)	State applications of hydraulic jump.	[2]
	b)	A rectangular channel 20 m wide flow with normal depth of 2 m with slope of bed 1 in 6400. At a certain section, the flow depth is 3 m. How a upstream or downstream of this section will the depth be 2.6 m. Use st method and take only two steps. Take Manning's coefficient = 0.01 Sketch and mention the profile.	far ep
Q5)	a)	Derive De Marchi equation for side weir.	[6]
	b)	Write short note on solitary wave.	[4]
Q6)	a)	Classify the SVF profiles.	[4]
	b)	Derive dynamic equation of uniformly progressive wave.	[6]
Q7)	a)	Write in brief about alluvial channel bed forms.	[4]
	b)	Discuss the development of Muskingum method of flood routing stati the equations and algorithm.	ng [6]
Q8)	a)	Derive Rouse equation for suspended bed load.	[6]
	b)	Explain method of characteristics for flood routing.	[4]

