Total No.	of Questions	: 8	1
-----------	--------------	-----	---

SEAT No.:	
-----------	--

P4529

[4860] - 613

[Total No. of Pages: 3

M.E. (Civil) (Water resources and Environmental Engineering) OPEN CHANNEL HYDRAULICS (2012 Course) (501609) (Semester-II)

Time: 3 Hours [Max. Marks: 100

Instructions to the candidates:

- 1) Answer any three questions from each section.
- 2) Answers to the two sections should be written in separate books.
- 3) Neat diagrams must be drawn wherever necessary.
- 4) Figures to the right side indicate full marks.
- 5) Use of logarithms tables, slide rule, Mollier charts, electronic pocket calculator is allowed.
- 6) Assume suitable data if necessary.

SECTION-I

- **Q1)** a) A discharge of 20 m³/s flows in a rectangular channel 10 m wide set to a slope of 10⁻⁴. Find the normal depth of flow if n=0.012 [8]
 - b) Define conveyance, second hydraulic exponent, normal depth, critical depth in relation with open channel flow. [8]
- **Q2)** a) Write in detail about control of jump by abrupt rise in bed. [8]
 - b) Derive relation between conjugate depths for a sloping channel. [8]
- Q3) a) Integrate the dynamic equation of GVF by Chow's method and derive equation for distance between two sections across a profile.[8]
 - b) Explain M₂, S₁ and A₂ profile with a neat sketch. [8]

Q4) Write short notes on (any three)

[18]

- a) Assumptions involved in the analysis of GVF.
- b) Characteristics of hydraulic jump on sloping floor.
- c) Relation between Manning's 'n' and Chezy's C.
- d) Velocity distribution in open channel.

SECTION-II

- Q5) a) What is spatially varied flow? Explain its different types with sketches.State the assumptions made for deriving the dynamic equation for spatially varied flow.[8]
 - b) Derive De-Marchi equation for side weirs.

[8]

Q6) a) Explain method of characteristics for flood routing.

[6]

b) Route the following flood through a reach for which K=12 h and x=0.2. At t=0 the outflow discharge is $10 \text{ m}^3/\text{s}$. Use Muskingum method [12]

Time(h)	0	6	12	18	24	30	36	42	48	54
Inflow(m3/s)	10	20	50	60	55	45	35	27	20	15

Q7) a) Derive dynamic equation of monoclonal rising wave.

[8]

b) A rectangular channel 3 m wide has a flow of 3.6m³/s with a velocity of 0.8m/s. If a sudden release of additional flow at upstream end of the channel causes the depth to rise by 50% determine the absolute velocity of resulting surge and new flow rate. [8]

- a) Assumptions made in deriving equation for spatially varied flow Pwith increasing discharge.
- b) Bottom rocks.
- c) Dam break problem.
- d) Solitary wave.