P4229

[4860]-612

SEAT No. : [Total No. of Pages :4

M.E. (Civil) (Water Resources and Environmental Engg.)

OPTIMIZATION TECHNIQUES

(2012 Course) (Semester - II) (501608)

Time: 3 Hours] [Max. Marks:100

Instructions to the candidates:

- 1) Answer any three questions from each section.
- 2) Answers to the two sections should be written in separate books.
- 3) Neat diagrams must be drawn wherever necessary.
- 4) Figures to the right indicate full marks.

SECTION-I

Q1) a) Solve graphically.

[12]

$$Zmax = 2X_1 + 3X_2$$

Subject to
$$X_1 + X_2 \le 30$$

$$X_2 \ge 3$$

$$0 \le X_2 \le 12$$

$$0 \le X_1 \le 20$$

$$X_1 - X_2 \ge 0$$

- b) Write the applications of optimization techniques to water resource engineering. [6]
- Q2) a) Show the following cases by graphical means and explain. [8]
 - i) Unique solution
 - ii) Infinite solution
 - iii) Unbalanced solution
 - iv) No solution

b) Solve the following LP problems by the revised simplex method. [8]

Minimize
$$f = x_1 - 3x_2 + 2x_3$$

Subject to $3x_1 - 3x_2 + 2x_3 \ge 7$
 $-2x_1 - 4x_2 \le 12$
 $-4x_1 + 3x_2 + 8x_3 \le 10$
 $x_i >= 0, i = 1 \text{ to } 3$

Q3) a) Determine the maximum and minimum values of the function;
$$F(x) = 12x^5 - 45x^4 + 40x^3 + 5$$
 [8]

- b) Define Saddle Point and its Significance. [8]
- **Q4)** a) What is the difference between Fibonacci & Golden Section Method.[8]
 - b) Find the minimum of f = x(x-1.5) in the interval (0, 1) to within 10% of the exact value. [8]

SECTION-II

- **Q5)** a) What is dynamic programming? How it is different from linear programming? Also state the Bellman's Principle of optimality. [6]
 - b) A salesman located in city A decided to travel to city B. he knew the distances of alternative routes from city A to city B, the city of origin A, is city 1 and the destination city B is city 10. Other cities through which the salesman will have to pass are numbered 2 to 9. Then fine the shortest route.

 [10]

Node	Distances	Node	Distances	Node	Distances
1-2	8	3-7	4	6-9	4
1-3	7	4-5	3	7-8	3
1-4	10	4-6	5	7-9	5
2-5	4	4-7	4	8-10	4
2-6	6	5-8	7	9-10	6
2-7	8	5-9	6		
3-6	10	6-8	5		

Q6) a) Determine the optimal sequence needed to process Job -1 and 2 on five machines A, B, C, D & E. For each machine find the job which should be done first. Also calculate the total time needed to completer both the jobs. [12]

Job-1	Sequence:	A	В	C	D	E
	Time (Hrs):	1	2	3	5	1
Job-2	Sequence:	C	A	D	Е	В
	Time (Hrs);	3	4	2	1	5

- b) State advantages and limitations of simulation technique. [6]
- Q7) a) Discuss the fields of application for queuing theory. Explain queue discipline and its various forms.[6]
 - b) A sample of 100 arrivals of automobiles at toll both is found to be according to the following distribution; [10]

Time	0.	1.	1.	2.	2.	3.	3.	4.	4.	5.
between	5	0	5	0	5	0	5	0	5	0
arrivals in Min										
Frequency	2	6	10	24	20	15	10	7	4	2

The time taken for service follows the distribution.

Service Time in Min.	0.5	1.0	1.5	2.0	2.5
Frequency	13	22	37	20	8

Estimate the average % waiting time and idle time of a customer by simulation for next 10 arrivals. Use the following random numbers.

Arrivals: Service:

- Q8) a) Explain Two Person Zero Sum Game. Distinguish between pure strategy & mixed strategy.[8]
 - b) Reduce the following game by dominance and find the game value. [8]

	Player B						
Player A	Strategies	I	II	III	IV		
	Ι	20	15	12	35		
	II	25	14	8	10		
	III	40	2	10	5		
	IV	-5	4	11	0		

888