Total No	. of Questions	:	8]	
----------	----------------	---	----	--

SEAT No.:	
-----------	--

P4263

[4860] - 1070

[Total No. of Pages: 2

M.E. (Mechanical Design) FINITE ELEMENT METHOD (2013 Credit Pattern) (502209) (Semester - II)

Time: 3 Hours [Max. Marks: 50

Instructions to the candidates:

- 1) Solve any five questions
- 2) Neat diagrams must be drawn wherever necessary.
- 3) Figures to the right side indicate full marks.
- 4) Use of Calculator is allowed.
- 5) Assume suitable data, if necessary.
- **Q1)** Write short note on (any two):

[10]

- a) Plain stress and plain strain problem.
- b) Characteristics of Global Stiffness Matrix.
- c) The Gelerkin Method.
- **Q2)** Evaluate using 2 point Gaussians quadrature method. [10]

a)
$$I = \int_{-1}^{1} \left[3e^x + x^2 + \frac{1}{(x+2)} \right] dx$$

b)
$$I = \int_{-1}^{1} \left[\cos \frac{\pi x}{2} \right] dx$$

- Q3) Explain the difference between p and h refinements in Finite Element Method& Write its significance. [10]
- Q4) What is modal analysis? What are mode shapes? Explain with suitable example.[10]

- Q5) Explain lumped mass matrix and consistent mass matrix with suitable example.[10]
- Q6) How to decide finite element mesh density for vibration and acoustic analysis?
 [10]
- Q7) Explain Numerical integration by Simpson's 1/3rd rule in detail. Comment on difference between Implicit and Explicit Numerical schemes.
 [10]
- **Q8)** Compute $I = \int_{e} N_1 N_2 N_3 dA$, where N_i are the linear shape functions for the 3-noded CST element. [10]

• • •