Seat	
No.	

[4857]-215

S.E. (IT) Second Semester) EXAMINATION, 2015 DATA STRUCTURES AND FILES (2008 PATTERN)

Time: Three Hours

Maximum Marks: 100

- N.B. :— (i) Answer Q. No. 1 or Q. No. 2, Q. No. 3 or Q. No. 4,
 Q. No. 5 or Q. No. 6 from Section I and Q. No. 7 or
 Q. No. 8, Q. No. 9 or Q. No. 10, Q. No. 11 or Q. No.
 12 from Section II.
 - (ii) Answers to the two Sections should be written in separate answer-books.
 - (iii) Neat diagrams must be drawn wherever necessary.
 - (iv) Assume suitable data, if necessary.

SECTION I

- 1. (a) Assume a hash table of size 15 and Hash function H(x) = x mod 15. Perform linear probing with and without replacement for the given set of values:

 [10]
 - 10, 1, 2, 4, 72, 65, 85, 87, 90, 58, 52, 53, 42, 44, 91
 - (b) Explain the features of a sequential file. Write a 'C' program to copy contents of one file to another using command line arguments. [8]

P.T.O.

- **2.** (a) What are the characteristics of a good Hash function? How collision can be resolved in a Hash table? [10]
 - (b) Explain various file opening modes with respect to text and binary files. [8]
- **3.** (a) Clearly indicate the contents of stack during conversion of given infix expression to prefix: [8]

$$A + B * C - D + E/F/(G + H)$$

- (b) Transform each of the following infix expression to postfix form using stack. Show clearly the contents of stack: [8]
 - (i) D B + C
 - (ii) A * B + C * D
 - (iii) (A + B) * C D * F + C
 - $(iv) (A C)^* (B + C D * E) * F)$

Or

4. (a) Imagine we have two empty stacks of integers, S1 and S2. Draw a picture of each stack after the following operations:[8]

```
Pushstack(S1, 3);
```

Pushstack(S1, 5);

Pushstack(S1, 7);

Pushstack(S1, 9);

Pushstack(S1, 11);

Pushstack(S1, 13);

 $while \ (!emptystack(S1))$

{

Popstack(S1, x);

Popstack(S1, x);

Pushstack(S2, x);

}

- (b) Clearly indicate the contents of stack for evaluating the following postfix expressions. Assume A = 1, B = 2, C = 3: [8]
 - (i) AB + C BA + C * +
 - (ii) ABC + * CBA +*
- **5.** (a) Differentiate between a queue and an array. List down the applications of queues. [8]
 - (b) Write a pseudo C code for implementation of circular queue using array. [8]

Or

6. (a) Consider the following dequeue of characters where DEQUE is a circular array which is allocated six memory cells:

LEFT = 2, RIGHT = 4, DEQUE : -, A, C, D, -, -.

Describe the dequeue while the following operations take place:

- (i) F is added to the right of the dequeue;
- (ii) Two letter on the right are deleted from the dequeue;
- (iii) K, L and M are added to the left of the dequeue;
- (iv) One letter on the left is deleted from the dequeue;
- (v) R is added to the left of the dequeue;
- (vi) S is added to the right of the dequeue;
- (vii) T is added to the right of the dequeue; [8]

[4857]-215 3 P.T.O.

(b) Write a pseudo C code for implementation of priority queue using sequential organization and represent each pseudocode step diagrammatically. [8]

SECTION II

- **7.** (a) Define the following with respect to trees with example:[8]
 - (1) Internal node
 - (2) Sibling
 - (3) Ancestor
 - (4) Height
 - (5) Binary tree
 - (6) Balance factor
 - (7) Path
 - (8) Level
 - (b) For a binary tree, the inorder and postorder traversal is as follows:

Inorder: H, D, I, B, E, A, J, F, K, C, G

Postorder: H, I, D, E, B, J, K, F, G, C, A

Draw the binary tree. Identify the non-leaf nodes of the tree and find height of the tree.

Or

8. (a) Why is it necessary to convert a general tree into a binary tree? Convert the given tree into binary tree and give the

steps for conversion:

[8]

- (b) What is Binary search tree? Write a pseudo for deletion and insertion of a node in Binary search tree. [8]
- **9.** (a) Find minimum spanning tree using Prim's method for the following graph. Show the intermediate steps. Write an algorithm for Kruskal's method. [8]

- (b) Define the following terms with respect to graphs: [8]
 - (1) Digraph
 - (2) Weakly connected graph
 - (3) Degree of a vertex
 - (4) Cycle
 - (5) Loop

- (6) Spanning tree
- (7) Disjoint graph
- (8) Strongly connected graph.

Or

10. (a) Find the shortest path using Dijkstra's algorithm from node A to every other node in the graph shown below: [8]

- (b) Give the applications of Minimum spanning tree and Dijkstra's algorithm with examples. [8]
- 11. (a) Define a heap. With examples describe different types of heaps. Make a heap out of the following data read from the keyboard: 23, 7, 92, 6, 12, 14, 40, 44, 20, 21. Sort the heap in ascending order. [10]
 - (b) Why is Huffman code used for data compression? Draw a Huffman tree for the given data set and find the corresponding Huffman codes: [8]

A	9	G	3
В	4	Н	9
С	2	I	11
D	4	J	6
E	10	K	7
F	3	L	4

12. (a) Construct an AVL search tree by inserting the following elements in the order of their occurrence. Show the balance factor and type of rotation at each stage: [10]

16, 25, 9, 12, 35, 58, 82, 68, 72

(b) Write notes on:

[8]

- (1) Symbol table
- (2) Optimal binary search tree.