Seat No.

[4857]-203

S.E. (Computer/IT) (First Semester) EXAMINATION, 2015 DIGITAL ELECTRONICS AND LOGIC DESIGN (2008 PATTERN)

Time: Three Hours

Maximum Marks: 100

- **N.B.** :— (i) Answers to the *two* Sections should be written in separate answer-books.
 - (ii) Answer any three questions from each Section.
 - (iii) Neat diagrams must be drawn wherever necessary.
 - (iv) Figures to the right indicate full marks.
 - (v) Use of calculator is allowed.
 - (vi) Assume suitable data, if necessary.

SECTION I

- **1.** (a) Express the following numbers in binary, show the step-by-step equations and calculations: [6]
 - (i) $(110.110)_{10}$
 - (ii) $(234.234)_{10}$.
 - (b) Convert 4-bit Gray Code into corresponding BCD code. Show truth table and MSI circuit. [6]
 - (c) Perform the following Hexadecimal subtraction and show the answer in Hexadecimal only: [6]
 - (i) $(ABC)_{16} (CBA)_{16}$
 - (ii) $(759)_{16} (957)_{16}$.

- OrConvert the following octal numbers into its equivalent decimal 2. (a) [6] and hex: (i) $(555)_{8}$ (ii) $(777)_{\rm Q}$. (*b*) Solve the following equations using K-map minimization $\lceil 12 \rceil$ technique: (i) $Z = f(A, B, C, D) = \pi(2, 7, 8, 10, 11, 13, 15)$ $Z = f(A, B, C, D) = \Sigma(0, 3, 4, 9, 10, 12, 14).$ (ii)3.
- **3.** (a) Draw 3-i/p standard TTL NAND gate with Totem pole. Explain operation of transistor (ON/OFF) with suitable input conditions and truth table. [10]
 - (b) What is logic family? Explain types of logic families in detail. [6]

Or

- 4. (a) With the help of Quine-McClusky technique determine the PI, EPI for the following equation: [10] $Z = f(A, B, C, D) = \Sigma(0, 3, 8, 9, 10, 12, 15).$
 - (b) Explain standard TTL characteristics in brief. [6]
- **5.** (a) Design BCD to 7-segment code decoder using logical gates.

 Assume common Anode 7-segment LED's. [8]
 - (b) Design 16: 1 mux using 4: 1 mux (with enable inputs). Explain your circuit in short. [8]

	O1
6. (a)	Draw and explain 4-bit BCD adder using IC 7483. Explain
	any two BCD addition operations. [10]
(<i>b</i>)	Design BCD to 7-segment code decoder using logical gates.
	Assume common Cathode 7-segment LED's. [6]
	SECTION II
7. (a)	Explain with a neat diagram, working of 3-bit Up-Down
	Synchronous counter. Draw necessary timing diagrams. [10]
(<i>b</i>)	Design a sequence generator with a sequence 1101011. [8]
•	Or
8. (a)	Design SR Flip-Flop using JK Flip-Flop. [4]
<i>(b)</i>	Explain with a neat diagram working of Parallel In Serial Out
	4-Bit shift register. Draw necessary timing diagrams. [6]
(c)	Give any four applications of Shift Registers. Also explain
	4-bit Johnson's counter. [8]
9. (a)	Describe architectural blocks of FPGA. Briefly explain function
0. (a)	of each. [10]
(1)	
(<i>b</i>)	Write VHDL code for 4: 1 mux. [6]
	Or
10. (a)	With the help of an ASM chart, design a modulo 6 Up-Down
	counter. [10]
(<i>b</i>)	Write VHDL code for D Flip Flop. [6]
[4857]-203	3 P.T.O.
(<i>b</i>)	With the help of an ASM chart, design a modulo 6 Up-Do counter. Write VHDL code for D Flip Flop.

11.	(a) Dra	v and	explain	general	structure	of	PLA.	[8]
11.	(a) Dra	v and	explain	general	structure	of	PLA.	L

- (b) Explain what is Bus ? Give different types of Bus used by a microprocessor. Explain the function of :
 - (i) ALU
 - (ii) Program Counter. [4]

Or

- **12.** (a) Design Using PLD a 3 : 8 Decoder. [8]
 - (b) Draw a generalized block diagram of a microprocessor. Briefly explain function of each block. [8]