Total No. of Questions—12]

[Total No. of Printed Pages—4

Seat	
No.	

[4857]-212

S.E. (Information Technology) (First Semester) EXAMINATION, 2015

FUNDAMENTAL OF DATA STRUCTURES (2008 PATTERN)

Time: Three Hours

Maximum Marks: 100

- **N.B.** :— (i) Answers to the two sections should be written in separate answer-books.
 - (ii) Answer any three questions from each Section.
 - (iii) Neat diagrams must be drawn wherever necessary.
 - (iv) Figures to the right indicate full marks.
 - (v) Use of calculator is allowed.
 - (vi) Assume suitable data, if necessary.

SECTION I

- **1.** (a) Explain different bitwise operators in C. [6]
 - (b) Write a C program to print binary equivalent of a decimal number. [6]
 - (c) What do you mean by type-definition? Explain with suitable example. [4]

Or

- **2.** (a) Write a C program to find out length of string without using library function. [6]
 - (b) Differentiate between macro and function with example. [6]

P.T.O.

```
What is output of the following C code? Explain:
                 #define M(x) x^*x
           (i)
                 main()
                      printf("%d", M(5+6));
           (ii)
                 main()
                      int x;
                      x=5+6\%-7;
                      printf("%d", x);
                 }
3.
           What is a pointer variable? Explain declaration, initialization
     (a)
           and accessing a pointer variable with an example.
                                                                        [8]
           Write a recursive function to calculate the factorial value of
     (b)
           an integer entered through the keyboard.
                                                                        [8]
     (c)
           Distinguish between (*a)[10] and *a[5].
                                                                        [2]
                                    Or
4.
     (a)
           Write a C program using pointers that compares two integer
           arrays to see whether they are identical. The function should
           return 1 if they are identical, 0 otherwise.
                                                                       \lceil 10 \rceil
           Explain the usage of command line arguments with an
     (b)
           example.
                                                                        [4]
           Compare malloc and calloc function in C language.
                                                                        \lceil 4 \rceil
     (c)
           Write a C program for Fibonacci series and calculate its time
5.
     (a)
           complexity.
                                                                        [6]
           Define and explain time and space complexity of an algorithm. [6]
     (b)
           Compare linear and non-linear data structure.
     (c)
                                                                        [4]
[4857]-212
                                    2
```

 $\lceil 4 \rceil$

(c)

- **6.** (a) Explain static and dynamic data structures. [6]
 - (b) What is frequency count? Explain with an example. Find the frequency count for the given piece of code: [6] add(a,b,c,m,n)

for i:=1 to m do for j:=1 to n do c[i,j]:=a[i,j]+b[i,j];

(c) What is an abstract data type? Explain with an example. [4]

SECTION II

- 7. (a) Write a C program for iterative and recursive binary search to find a number in a given list of sorted numbers. [10]
 - (b) Compare merge sort and quick sort. Comment on time and space complexity in best, average and worst cases for both. [8]

Or

- 8. (a) Write an algorithm for bubble sort. Consider the following set of numbers. Sort them using bubble sort and show all passes: [10] 20, -14, 8, 13, -12, 2, 6, 7.
 - (b) Consider the following numbers. Sort them using bucket sort and show all passes: [8] 54, 14, 88, 56, 25, 11, 45, 91, 30, 12, 4.
- **9.** (a) Represent a sparse matrix using suitable data structure and write pseudo C code to subtract two sparse matrices. Analyze its time complexity. [10]
- (b) Explain the concept of linear data structure with example. [6] [4857]-212 3 P.T.O.

- 10. (a) Write an algorithm for the fast transpose of sparse matrix.Compare simple and fast transpose. Comment on time and space complexity for both. [10]
 - (b) Explain sequential memory organization with example. [6]
- 11. (a) Write data structure to represent the following generalized lists using linked list and represent them: [6]
 - (i) (a, (b, c), d)
 - (ii) (p, q, (r, s, (t, u), v)).
 - (b) Write a C program to create doubly link list. [6]
 - (c) Explain importance of header in a linked list. [4]

Or

- **12.** (a) Write a C program to add two sorted circular linked list of polynomials to form a third sorted list. Write time complexity. [10]
 - (b) Write node structure to represent GLL. Represent the following list using GLL: [6]
 - (i) (a, (b, c), d)
 - (ii) (a, b, c, (d, e)).