Seat No.

[4857]-114

S.E. (Mech./Auto./Prod. S/W/ Indus) (First Semester) EXAMINATION, 2015

ENGINEERING MATHEMATICS—III (2008 PATTERN)

Time: Three Hours

Maximum Marks: 100

- N.B. :— (i) Answer Q. No. 1 or Q. No. 2, Q. No. 3 or Q. No. 4,
 Q. No. 5 or Q. No. 6 from Section I and Q. No. 7
 or Q. No. 8, Q. No. 9 or Q. No. 10, Q. No. 11 or
 Q. No. 12 from Section II.
 - (ii) Answers to the two Sections should be written in separate answer-books.
 - (iii) Neat diagrams must be drawn wherever necessary.
 - (iv) Figures to the right indicate full marks.
 - (v) Use of non-programmable electronic pocket calculator is allowed.
 - (vi) Assume suitable data, if necessary.

SECTION I

1. (a) Solve any three:

 $\lceil 12 \rceil$

- (i) $(D 1)^3 y = e^x + 3$
- $(ii) \quad (D^3 + 4D)y = \sin 2x$
- (iii) $(D^2 4D + 3)y = x^3e^{2x}$
- (iv) $(D^2 + 1)y = \csc x$ (by variation of parameters).

(b) Solve:

$$\frac{dx}{dt} + y = \sin t$$
$$\frac{dy}{dt} + 4x = \cos t$$

Given that x = 0, y = 1 at t = 0.

Or

[5]

2. (a) Solve any three: [12]

(i)
$$(D - 1)^2 y = x^2 e^x$$

$$(ii) \quad (D^2 - 1)y = x \sin 3x$$

(iii)
$$x^2 \frac{d^2 y}{dx^2} + 3x \frac{dy}{dx} + y = \frac{1}{x} \sin(\log x)$$

$$(iv) \quad \frac{dx}{v} = \frac{dy}{-x} = \frac{dz}{2x - 3y}.$$

- (b) A 3 N weight stretches a spring 15 cms. If the weight is pulled 10 cms below the equilibrium position and then released.Find the displacement as a function of time t. [5]
- **3.** (a) Find Laplace Transform of the following (any two): [6]

(i)
$$F(t) = \begin{cases} a, & 0 < t < b \\ 0, & t > b \end{cases}$$

$$(ii) \int_{0}^{t} \left(\frac{e^{t} - \cos 2t}{t}\right) dt$$

$$(iii) \quad \frac{e^{at} - e^{bt}}{t}.$$

- (b) Solve by Laplace transform method : y'' + y = 0given y(0) = 1; y'(0) = 1.
- (c) By considering Fourier cosine transform of e^{-mx} (m > 0) prove that :

$$\int_{0}^{\infty} \frac{\cos \lambda x}{\lambda^2 + m^2} d\lambda = \frac{\pi}{2m} e^{-mx}; \quad m > 0; \quad x > 0.$$

Or

- **4.** (a) Find inverse Laplace transform (any two): [8]
 - $(i) \qquad \frac{1}{s\left(s^2 + 4\right)}$
 - $(ii) \quad \frac{s}{s^2 + 6s + 25}$
 - $(iii) \quad \frac{1}{(s+1)(s^2+1)}$

by convolution theorem.

- (b) Find Fourier sine transform of $\frac{e^{-ax}}{x}$. [4]
- (c) Using Fourier integral representation show that: [5]

$$\int_{0}^{\infty} \frac{2\cos \lambda x}{1+\lambda^{2}} d\lambda = \begin{cases} 0 & ; x < 0 \\ \pi e^{-x} & ; x > 0 \end{cases}$$

5. (a) Find the deflection y(x, t) of the vibrating string of length π and ends are fixed, corresponding to zero initial velocity.

Given deflection: [8]

$$f(x) = y = k(\sin x - \sin 2x)$$

at
$$t = 0$$
; use $\frac{\partial^2 u}{\partial t^2} = \frac{\partial^2 u}{\partial x^2}$.

(b) Solve:

$$\frac{\partial u}{\partial t} = k \frac{\partial^2 u}{\partial x^2},$$

for the conduction of heat along a homogeneous rod of length l with insulated sides is initially at a uniform temperature u_0 . Its ends are cooled to 0°C and are kept at that temperature. Find the temperature u(x, t) at any time t. [8]

Or

6. (a) Solve the equation: [8]

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$$

with condition:

- (i) u = 0 when $y \rightarrow \infty$; $\forall x$
- (ii) u = 0 when x = 0, $\forall y$
- (iii) u = 0 when x = 1, $\forall y$
- (iv) $u = (x x^2)$, when y = 0; for $0 \le x \le 1$.
- (b) Use Fourier transform to solve: [8]

$$\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2}; \quad 0 < x < \infty; \ t > 0$$

under the conditions:

(i) u(0, t) = 0; t > 0

[4857]-114

$$(ii) \quad u(x, \ 0) \ = \ \begin{cases} 1; \ 0 < x < 1 \\ 0; \ x > 1 \end{cases}$$

(*iii*) u(x, t) is bounded.

SECTION II

- 7. (a) The first four moments about any point are 0, 2.5, 0.7 and 18.75. Calculate the first four moment about mean. Also find β_1 and β_2 . [6]
 - (b) Given:

$$n = 10$$
, $\Sigma x_i = 299$, $\Sigma y_i = 290$, $\Sigma x_i y_i = 9403$,
 $\Sigma x_i^2 = 9849$, $\Sigma y_i^2 = 9104$.

Calculate the co-efficient of correlation. [5]

- (c) From a deck of 52 cards, two cards are drawn at random. Find the probability that:
 - (i) both are hearts
 - (ii) both the cards are of different series.

Or

- **8.** (a) For random variables, if P(1) = P(2) then by Poisson distribution find mean and the value of P(4). [5]
 - (b) In a sample of 1000 cases, the mean of certain test is 14 and S.D. is 25. Assuming the distribution is normal then how many students score below 8 marks.

Given
$$A(z = 0.24) = 0.0948$$
. [5]

(c) The equation of two regression lines are:

$$2x + 3y = 8 \text{ and}$$
$$x + 2y = 5$$

Find the mean values of *x* and *y*. Obtain the value of correlation co-efficient.

9. (a) If [4]

$$\overline{r} = \overline{a} \sin ht + \overline{b} \cos ht$$

where \overline{a} and \overline{b} are constant vectors, then find the value of :

[5]

[8]

$$\frac{d\overline{r}}{dt} \times \frac{d^2\overline{r}}{dt^2}$$

(b) Find the directional derivative of :

$$\phi = xy^2 + yz^3$$

at point (2, -1, 1) in the direction of vector:

$$\overline{i} + 2\overline{i} + 2\overline{k}$$

- (c) Prove that:
 - $(i) \qquad \nabla^4 r^4 = 120$
 - (ii) If ϕ and ψ satisfy Laplace equation, then prove that : $(\phi \nabla \psi \psi \nabla \phi)$

is solenoidal vector.

Or

10. (a) Show that the vector field: $\overline{F} = (2xz^3 + 6y)\overline{i} + (6x - 2yz)\overline{j} + (3x^2z^2 - y^2)\overline{k}$

is irrotational vector field. Also find the corresponding scalar potential ϕ such that $\overline{F} = \nabla \phi$.

[4857]-114

(b) Find the directional derivative of:

$$\phi = 2xz^4 - x^2y$$

at (2, -2, 1) towards point (1, 1, -1). [6]

(c) Find the angle between the tangents to the curve: [5]

$$x = t^2 + 1$$

$$y = 4t - 3$$

$$z = 2t^2 - 6t$$

at t = 2 and t = 3.

11. (*a*) Evaluate : [5]

$$\int_{C} \overline{F} \cdot d\overline{r}$$
; for

$$\overline{F} = 3x^2\overline{i} + (2xz - y)\overline{j} + z\overline{k}$$

along the straight line joining (0, 0, 0) to (1, 2, 3).

(b) Evaluate: [6]

$$\iint (\nabla \times \overline{F}) d\overline{s}$$

by Stokes' theorem for the force field

$$\overline{F} = (x - y^2)\overline{i} + 2xy\overline{j}$$

in the plane z = 0, bounded by y = 0, x = 2, y = x.

(c) By Divergence theorem, evaluate: [6]

$$\iint\limits_{S} \left(\frac{x\overline{i} + y\overline{j} + z\overline{k}}{r^2} \right) . d\overline{s}$$

where s is the surface bounded by sphere

$$x^2 + y^2 + z^2 = a^2$$
.

$$\int_{C} \left[\left(2x^{2} - y \right) \overline{i} + \left(\tan y - e^{y} + 4x \right) \overline{j} \right] . d\overline{r}$$

where, C: square with sides of length 5. Use Green's theorem.

$$\int_{C} (xy\,dx + xy^2)dy;$$

by Stokes' theorem, where, C: the square in xy plane with vertices (0, 0), (1, 0), (0, 1).

(c) Velocity distribution for a fluid is given by: [5]
$$u = -x$$
; $v = 2xy$; $w = 3 - z$

Determine the equations of stream lines passing through the point (1, 1, 0).