Total No. of Questions—12]

[Total No. of Printed Pages—4+1

Seat	
No.	

[4857]-112

S.E. (Mech. S/W/Mechanical/Automobile) (First Semester) EXAMINATION, 2015 METALLURGY

(2008 PATTERN)

Time: Three Hours Maximum Marks: 100

- N.B. :— (i) Answer any three questions from each Section.
 - (ii) Answers to the *two* sections should be written in separate answer-books.
 - (iii) Neat diagrams must be drawn wherever necessary.
 - (iv) Figures to the right indicate full marks.
 - (v) Assume suitable data, if necessary.

SECTION I

- **1.** (a) Draw BCC and FCC crystal structures and show its lattice constant and lattice angle. [4]
 - (b) What do you mean by crystal imperfection? Explain it with any two types in detail. [5]
 - (c) Why is Annealing required in highly cold worked material? Explain in detail. [6]
 - (d) What is CRSS? Derive its formula. [3]

Or

- **2.** (a) Explain Cold working and Hot working with *one* example each. [6]
 - (b) Explain in brief plastic deformation mechanism and its effect on Mechanical properties with neat graph. [6]
 - (c) Explain the difference in slip and twinning. [4]
 - (d) What is Frenkel imperfection? [2]

P.T.O.

3. ((a)	Write a short note on Radiography.	[4]
((b)	Which property of metal is used in high temperature application	?
		Define its test procedure to find out the same.	[4]
(c)	(c)	Draw the self-explanatory diagram for the following:	[8]
		(i) Stress stain diagram for Al	
		(ii) S-N diagram for non-ferrous material.	
		(iii) Intragranular fracture	
		(iv) Test specimen for izode impact test.	
		O.	
4 (· \	Or	Γ 4 Τ
4. ((a)		[4]
		(i) Strength	
		(ii) Resilience	
		(iii) Toughness	
(<i>b</i>)		(iv) Malleability.	
	(b)	Write short notes on (any two):	[8]
		(i) Fatigue Test	
		(ii) Rockwell Hardness Test	
(c)		(iii) Charpy Impact Test.	
	(c)	Explain Non-Destructive Test (any one):	[4]
		(i) Magnetic particle test flux	
		(ii) Dye penetration test.	
5. ((a)	What are the benefits using alloy steels as tool steel ov	ær
(<i>u</i>)	<i>,</i>		[4]
F 10 ====			[+]
[4857]-	$\cdot 112$	2	

<i>(b)</i>	Draw Iron-carbon diagram. Explain <i>all</i> the transformations
	on it. [8]
(c)	Which elements in cast iron make it different than steel. Write
	min four elements. [4]
	Or
6. (a)	Explain the malleabilising heat treatment. [4]
(<i>b</i>)	What is stainless-steel and write its classification? For the
	application like surgical seizer which steel from this group will
	be used? Explain your answer in detail. [6]
(c)	Give chemical composition for the following: [2]
	(i) AISI 1080
	(ii) C67.
(d)	Discuss slow cooling of AISI 1040 from its austenic temperature
	to room and calculate the percentage of phases at room
	temperature. [4]
	SECTION II
7. (a)	Draw self-explanatory diagram for the following (any two): [6]
	(i) Martempering
	(ii) Ausforming
	(iii) TTT diagram for eutectoide steel.
(<i>b</i>)	Why is it difficult to convert 100% Austenite to Martensite?
	Explain the reason. [4]
(c)	Write a short note on carburising and the heat treatment after
	carburising. [8]
[4857]-112	3 P.T.O.

8.	(a)	Explain the difference in Annealing and normalising and draw
		the microstructure for both of them at room temperature after
		the heat treatment. [6]
	(<i>b</i>)	Explain the hardening heat treatment? What is Hardenability? [4]
	(c)	Write a short note on Jominey end quench test. [4]
	(<i>d</i>)	Why is nitriding preferred over carburising where the
		dimensional stability is important? Explain in detail. [4]
9.	(a)	Draw and explain the flow chart for manufacturing of cemented
		carbides ? [4]
	<i>(b)</i>	Give typical composition and use for the following: [6]
		(i) Gun metal
		(ii) Cartridge brass
		(iii) Admilatry brass.
	(c)	Explain the following (any three): [6]
		(i) Apparent density
		(ii) Dezincification
		(iii) Tap density
		(iv) Effect of zinc in brass.
		Or
10.	(a)	Which type of Brass is used in manufacturing the cap brass?
		Explain in detail. [4]
	(<i>b</i>)	What are mechanical processes for powder manufacturing ?
		Explain all of them in detail. [8]
	(c)	Upto what percentage of zinc is added in brasses? Explain,
		why ?
[4857	7]-112	4

11. (a) Write short notes on :

(i) Ceramic materials

- (ii) Role of design engineer and selection of advance materials.
- (b) What is Composite material? Explain its classification in detail. [8]

Or

12. Write short notes on :

[16]

[8]

- (i) High temperature material
- (ii) Role of composite in RCC structure
- (iii) Cryogenic material
- (iv) Manufacturing process of any one ceramic material.