Seat	
No.	

[4857]-1081

S.E. (I.T.) (First Semester) EXAMINATION, 2015

DISCRETE STRUCTURE

(2012 **PATTERN**)

Time: Two Hours

Maximum Marks: 50

- N.B. :— (i) Answer Q. No. 1 or Q. No. 2, Q. No. 3 or Q. No. 4, Q. No. 5 or Q. No. 6, Q. No. 7 or Q. No. 8.
 - (ii) Draw Neat diagrams must be drawn wherever necessary.
 - (iii) Figures to the right side indicate full marks.
 - (iv) Assume suitable data, if necessary.
- 1. (a) (i) Show that $(A B) C = A (B \cup C)$ using Venn diagram. [6]
 - (ii) Obtain CNF for the following $\neg (p \lor q) \leftrightarrow (p \land q)$
 - (b) Draw the Hasse diagram of relation R on A. Let $A = \{1, 2, 3, 4, 5\}$ and $B = \{(1, 1), (2, 1), (2, 2), (3, 1), (3, 2), (3, 3), (4, 1), (4, 2), (4, 3), (4, 4), (5, 1), (5, 2), (5, 3), (5, 4), (5, 5)\}$ [6]

Or

(a) Suppose that 100 out of 120 mathematics students at a college take at least one of the languages French, German and Russian.Also suppose [6]

65 study French

20 study French and German

45 study German


25 study French and Russian

P.T.O.

42 study Russian

15 study German and Russian

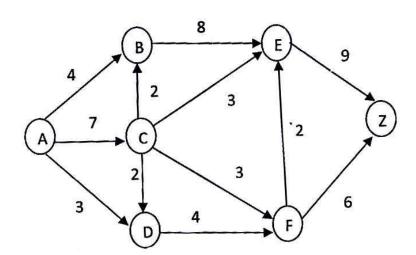
- (i) Find the number of students who study all the three languages.
- (ii) Find incorrect number of students in each region of Venn diagram.
- (iii) Determine the number K of students who study:
 - (a) Exactly one language
 - (b) Exactly two languages.
- (b) Let $A = \{a, b, c, d\}$ and let R be a relation on A whose relation is $R = \{(b, a), (c, b), (a, d), (b, d), (c, d)\}$. Find transitive closure using Warahall's method. [6]
- 3. (a) $G = \{0, 1, 2, 3, 4, 5, 6, 7\}$ and operation is '+8' addition modulo8, then (G, +8) is an abelian group. [6]
 - (b) Find the shortest path from a to z, using Dijkstra's Algorithm. [6]

- **4.** (a) Define the following terms with suitable example: [6]
 - (i) Factor of Graph
 - (ii) Weighted Graph
 - (iii) Graph Coloring
 - (iv) Bipartite Graph
 - (b) Find the minimum distance of an encoding function $e: B^2 \to B^5$ given as : e(2, 5) [6]

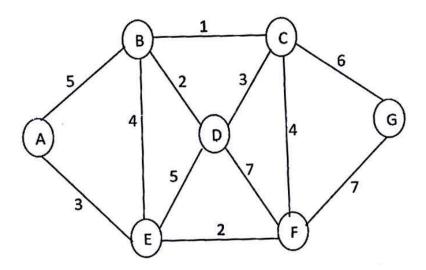
$$e(0, 0) = 0 \ 0 \ 0 \ 0$$

$$e(0, 1) = 1 0 0 1 1$$

$$e(1, 0) = 0 1 1 1 0$$


$$e(1, 1) = 1 1 1 1 1$$

5. (a) Construct a binary tree from given inorder and preorder traversals: [6]


Inorder: A E B D C F G K I H J L

Preorder : F E A D B C G H I K J L

(b) Find the maximum flow in the following transport network: [7]

6. (a) Determine the minimum spanning tree using Prims algorithm for the following graph: [6]

(b) For the following set of weight, construct the optimal binary prefix tree. For each of the weight in the set, give the corresponding prefix code:

[7]

1, 2, 4, 5, 6, 9, 10, 12, 15

- 7. (a) If 2 cards are drawn from a usual deck of well shuffled pack of 52 cards, what is the probability that 2 aces are drawn?
 - (b) Two fair dice are rolled, what is the probability that: [4]
 - (i) Sum of the faces is a perfect square.
 - (ii) Sum of the faces is neither 5, 6 or 7.

- (c) (i) In how many ways can 10 boys and 5 girls stand in a line so that no two girls are next to each other? (All boys and girls are distinct)
 - (ii) In how many ways can 10 boys and 5 girls stand around a circle so that no two girls are next to each other?

 (All boys and girls are distinct).

Or

- **8.** (a) A bag contains 5 red, 4 white and 8 blue balls. 4 balls are drawn at random. What is the probability that there is at least one ball of each colour?
 - (b) A student must answer 7 out of 10 questions in an examination. [6]
 - (i) How many choices does the student have ?
 - (ii) How many choices does she have if she must answer the first three questions ?
 - (iii) How many choices does she have if she must answer at least three of the first five questions ?