Seat	
No.	

[4857]-1013

S.E. (Mechanical/Automobile) (First Semester)

EXAMINATION, 2015

MATERIAL SCIENCE

(2012 **PATTERN**)

Time: Two Hours

Maximum Marks: 50

- N.B. :— (i) Attempt Q. No. 1 or Q. No. 2, Q. No. 3 or Q. No. 4, Q. No. 5 or Q. No. 6 and Q. No. 7 or Q. No. 8.
 - (ii) Assume suitable data, if necessary.
 - (iii) Neat diagrams should be drawn wherever necessary.
 - (iv) Figures to the right indicate full marks.
- 1. (a) Show that the atomic packing factor for BCC crystal is 0.68.
 - (b) Explain any two point defects with the help of diagram. [4]
 - (c) A continuous and aligned glass fiber reinforced composite of 40 volume % of glass fibers having a modulus of elasticity of 69 GPa and 60 volume % of a polyester resin that, when hardened, displays a modulus of 3.4 GPa. If the cross-sectional area is 250 mm² and a stress of 50 MPa is applied in this longitudinal direction, compute the magnitude of the load carried by each of the fiber and matrix phases. [4]

2.	(a)	Derive linear density expression of FCC [100] and [111] directions			
		in terms of the atomic radius R. [4]			
	(<i>b</i>)	Explain the following processing methods of ceramics: [6]			
		(i) Cold isostatic pressing			
		(ii) Slip casting.			
	(c)	Explain work hardening on the basis of dislocations. [2]			
3.	(a)	A cylindrical specimen of steel having an original diameter			
		12.8 mm is tensile tested to fracture and found to have an			
		engineering fracture strength of 460 MPa if its cross-sectional			
		diameter of fracture is 10.7 mm, determine :			
		(i) Ductility in terms of percent reduction in area.			
		(ii) True stress at fracture. [6]			
	(<i>b</i>)	What is fatigue? Draw S-N curve for Mild Steel and Aluminu			
		and explain Endurance limit. [6]			
		Or			
4.	(a)	Explain the methods of magnetization and demagnetization of			

component during magnetic particle inspection. Why the

[6]

demagnetization is necessary after testing?

[4857]-1013

(b) Differentiate	Differentiate between dye penetrant inspection and fluorescent				
	penetrant ins	spection.		[4]		
(c) Explain Moh	s hardness scal	e.	[2]		
5. (a)) Discuss abou	t particle size,	shape and size	distribution and		
	its effect on	of the final s	intered compact.			
				[6]		
(b	Using flow s	heet explain ma	nufacturing of	cemented carbide		
	tools by pow	der metallurgy.		[7]		
		Or				
6. (a	d) Discuss pr	oduction of	Iron powder	by reduction		
	process.			[4]		
(b) What is com	paction ? List t	the defects of c	ompact and their		
	remedies.			[5]		
(c) What is sint	ering ? Explain	the stages of	sintering. [4]		
7. (a	Define nano-	material and gi	ve application.	Write a note on		
	carbon nano-	tubes.		[6]		
(b) Give the clas	sification of bio-	material. Descri	be properties and		
	application of	f Nickel alloy a	as bio-material.	[7]		
[4857]-1	013	3		P.T.O.		
	J _ J	•		1.1.0.		

- 8. (a) Explain the use of Ni base and Cobalt base alloy for high temperature application. [4]
 - (b) Explain the properties of superconductors. Briefly explain any two applications of superconductors. [6]
 - (c) Discuss the effect of Cryogenic heat treatment on steel alloy. [3]