| Total N | o. of Q | uestions | : | 12] |
|---------|---------|----------|---|-----|
|---------|---------|----------|---|-----|

| SEAT No. : | :[ |  |  |
|------------|----|--|--|
|------------|----|--|--|

[Total No. of Pages: 4

P1418 [4858] - 185

## T.E. (Computer Engg.) THEORY OF COMPUTATION

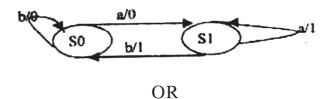
(2008 Pattern) (Semester - I)

Time: 3 Hours [Max. Marks: 100

## Instructions to the candidates:

- 1) Answer question 1 or 2, 3 or 4 and 5 or 6 from Section I and question 7 or 8, 9 or 10 and 11 or 12 from Section II.
- 2) Answers to the two sections should be written in separate answer books.
- 3) Neat diagrams must be drawn wherever necessary.
- 4) Figures to the right indicate full marks.
- 5) Assume suitable data if necessary.

## **SECTION - I**


*Q1*) a) Define the following terms.

[6]

- i) Kleen Closure
- ii) Finite Autimata
- iii) Transition Diagram
- b) Design DFA for a language of string 0 & 1 that

[6]

- i) Ending with 11
- ii) Either begin or end with 01
- c) Convert the following Mealy Machine to Moore Machine. Show the output for input string 'abba' through Moore machine. [4]



| Q2) | a) | Convert | DFA | to | NFA. |
|-----|----|---------|-----|----|------|
| ~   | /  |         |     |    |      |

|    | 0     | 1   |
|----|-------|-----|
| p  | {p,q} | {p} |
| q  | {r}   | {r} |
| r  | {s}   | φ   |
| s* | {s}   | {s} |

b) Design a Moore Machine that gives an output of 1 if the input string ends in 'bab'. Convert the same Moore Machine to Mealy Machine.

[8]

[4]

[8]

Q3) a) Show 
$$((a+bb)*aa)*$$
 and  $\epsilon+(a+bb)*aa$  are equivalent.

b) Prove that 
$$(1+00*1)+(1+00*1)(0+10*1)*(0+10*1)=0*1(0+10*1)*$$

c) Convert following Regular Expression to DFA (Regular Expression to NFA with  $\epsilon$  moves and direct method to convert NFA with  $\epsilon$  to DFA) [8]

$$R.E.=01[(10*+111)*+0]*1$$

OR

**Q4)** a) Show for regular expression 
$$(rs+r)*r=r(sr+r)*$$

b) Draw DFA of following Regular Expression. [6]

i) 
$$(11+00)$$
\*

c) Using pumping lemma show that the language  $L=\{a^mb^n | m>n\}$  is not regular. [6]

[6]

[4]

$$E \rightarrow E + T | T$$

$$T \rightarrow T*F|F$$

$$F \rightarrow (E) \mid a \mid b$$

Give derivation of (a+b)\* a+b using sentential form and parse tree

b) Give context free grammar for following.

[6]

i) 
$$(011+1)*(01)*$$

ii) 
$$0^{i}1^{i+k}0^{k}$$
 where i,  $k > 0$ 

[6]

$$S \rightarrow ASB \mid \epsilon$$

$$A \rightarrow aAS \mid a$$

Q6) a) Construct the right linear grammar corresponding to the regular expression.[6]

R=(0+1)1\*(1+(01)\*)

b) Discuss the following applications of CFG.

**[6]** 

[6]

- i) Parser
- ii) Markup Languages
- c) Convert the grammar given below to its equivalent CNF.

 $S \rightarrow PQP$ 

P→0P | ε

 $Q\rightarrow 1Q \mid \epsilon$ 

## **SECTION - II**

Q7) a) Construct a PDA equivalent to the following.

[8]

CFG G.

 $S \rightarrow OBB$ 

 $B \rightarrow OS \mid 1S \mid 0$ 

Test whether  $.010^4$  is in N(A).

b) Define acceptance by PDA.

**[4]** 

- i) By final state
- ii) By empty stack
- c) Construct pushdown automata  $L = \{W \subset W^R | W \in (a + b)^*\}$  and  $W^R$  is reverse string of W. [6]

OR

Q8) a) Consider the PDA with following moves. Construct a CFG equivalent to PDA.[8]

 $M = (\{q_0, q_1\}, \{a, b\}, \{P, Z_0\}, \delta, q_0, Z_0, \phi)$  and  $\delta$  is given as :

$$\delta(q_0, a, Z_0) = (q_0, PZ_0)$$

$$\delta(q_0, a, P) = (q_0, PP)$$

$$\delta(q_0, b, P) = (q_1, \epsilon)$$

$$\delta(q_1, b, P) = (q_1, \epsilon)$$

$$\delta(q_1, \epsilon, P) = (q_1, \epsilon)$$

$$\delta(q_1, \epsilon, Z_0) = (q_1, \epsilon)$$

- b) Compare deterministic PDA with non-deterministic PDA. [4]
- c) Obtain a PDA to accept the language  $L = \{a^nb^n \mid n \ge a\}$  by final state.

**[6]** 

| Q9)             | a) | and TM. [8]                                                                                                                                      |                  |  |  |
|-----------------|----|--------------------------------------------------------------------------------------------------------------------------------------------------|------------------|--|--|
|                 | b) | Design a turing machine M to recognize the language $\{a^nb^nc^n\mid n\geq 1\}$                                                                  | [ }<br><b>8]</b> |  |  |
|                 |    | OR                                                                                                                                               |                  |  |  |
| <b>Q10</b> ) a) |    | Write short notes on:                                                                                                                            | 8]               |  |  |
|                 |    | i) Universal Turing Machine.                                                                                                                     |                  |  |  |
|                 |    | ii) Composite Turing Machine.                                                                                                                    |                  |  |  |
|                 |    | iii) Iterated Turing Machine.                                                                                                                    |                  |  |  |
|                 |    | iv) Multitape Turing Machine.                                                                                                                    |                  |  |  |
|                 | b) | Design a turing machine for finding.2's complement of a binumber.                                                                                |                  |  |  |
|                 | c) | Construct a post machine for the language $L = \{0^n1^n \mid n \ge 0\}$                                                                          | 4]               |  |  |
| Q11)            | a) | Describe in detail Chomsky Hierarchy with example. [8]                                                                                           | 8]               |  |  |
| 1 2             |    | Show that if $L_1$ & $L_2$ are recursively enumerable languages over then $L_1 \cup L_2$ and $L_1 \cap L_2$ are also recursively enumerable. [8] | Σ<br><b>8]</b>   |  |  |
|                 |    | OR                                                                                                                                               |                  |  |  |
| <b>Q12</b> ) a) |    | Define the following terms:                                                                                                                      | 8]               |  |  |
|                 |    | i) Post correspondence problem                                                                                                                   |                  |  |  |
|                 |    | ii) Un-decidability                                                                                                                              |                  |  |  |
|                 |    | iii) Context sensitive language                                                                                                                  |                  |  |  |
|                 |    | iv) Recursive & Recursively Enumerable language                                                                                                  |                  |  |  |
|                 | b) | What is Halting problem? Prove that halting problem is undecidabl  [8]                                                                           | e.<br>8]         |  |  |
|                 |    |                                                                                                                                                  |                  |  |  |

\*\*\*