Total No. of Questions: 1	2]	
----------------------------------	----	--

P3540

SEAT No. :	
------------	--

[Total No. of Pages: 4

[4858] - 108 T.E. (Civil)

ENVIRONMENTAL ENGINEERING-I

(2008 Pattern) (Semester - II)

Time: 3 Hours] [Max. Marks: 100

Instructions to the candidates:

- 1) Solve Q.1 or Q.2, Q.3 or Q.4, Q.5 or Q.6 from Section I and Q.7 or Q.8, Q.9 or Q.10, Q.11 or Q.12 from Section II.
- 2) Answer to the two sections should be written in separate books.
- 3) Neat diagrams must be drawn wherever necessary.
- 4) Figures to the right indicate full marks.
- 5) Use of logarithmic tables, slide rule, mollier charts, electronics pocket calculator and steam tables is allowed.
- 6) Assume suitable data, if necessary.

SECTION - I

- Q1) a) Give in tabular form, the design period adopted for various components of a water supply project justify the same with brief explanation for each.
 - b) Enlist 4 types of pipe materials used in water supply. Write a detailed note on use of CI pipes in water supply project with reference to manufacturing jointing availability advantages and disavantages. [10]

OR

- Q2) a) Give the permissible limit for following parameters in drinking water as per IS: 10500 and their adverse effect if they are in excess [4]
 - i) Chlorides
 - ii) Iron
 - iii) Fluorides
 - iv) Nitrites
 - b) Enlist various valves used in rising mains. Also state their location and functions. [5]
 - c) Enumerate the various methods of forecasting future population of a town and explain the incremental increase method. [9]

Q3) a)	Draw the flow sheets of water treatment processes adop	pted for following
	conditions.	[8]

- i) GW source with excess Fe, CO, and odorous gases.
- ii) Conventional WTP in urban area with river as raw water source.
- b) Maximum daily demand for water in a city is 130. MLD. Design cascade aerator for the same. Draw plan and elevation of the aeration fountain. Assume the inlet pipe diameter as 1.1m. [8]

OR

Q4) a) Explain with a neat sketch, various types of settling observed during sedimentation. [4]

b) Design clariflocculator using following data and design criteria: [12]

i) Desired average outflow from clarific culator $= 300 \text{m}^3/\text{hr}$

ii) Water lost in desludging

= 2%

iii) Detention period

=20minutes

iv) Average value of velocity gradient, G

 $=40S^{-1}$

Q5) a) Enlist various types of filters based on

[8]

- i) Driving force and
- ii) Type of media used. Explain each in brief
- b) A filter unit of size 5m × 10m is backwashed after filtering 12500 m³ of water in 24 hours. The filter is backwashed at a rate of 15 1/sec/sq.m, for 15 minutes. Compute the average flow rate, quantity and percentage of treated water used in washing. Also, find the rate of wash water flow in each trough if 4 troughs are provided. [8]

OR

Q6) Write short notes on:

[6+5+5=16]

- a) Break point Chlorination
- b) Slow sand filters
- c) Operational problems in Rapid sand gravity filters.

SECTION - II

- **Q7)** a) Defferentiate between carbonate and non carbonate hardness [5]
 - b) Write short note on fluoridation and defluoridation [5]
 - c) Discuss in detail water treatment of swimming pools. [6]

OR

Q8) a) Explain different methods of desalination.

[5]

[4]

- b) Elaborate various methods to remove odour and taste from water. [5]
- c) Enumerate the methods of water softening. Describe Zeolite process of softening water in detail. [6]
- **Q9)** a) Explain different layouts of distribution pipe network.
 - b) Calculate the storage capacity of the distribution reservoir from the following data. [8]

Daily demand = 2,50,000 litres

Pumping hours = 9 hours per day between 8 am to 5pm

Pattern of draw off is as follows:

Supply hours	Percentage of day's supply		
7 am to 8 am	30%		
8 am to 5 pm	35%		
5 pm to 6.30 pm	30%		
6.30 pm to 7 am	5%		

c) Discuss need of Rain water harvesting system

[4]

OR

Q10)a) Give functions of Elevated Service Reservoir.

[4]

b) Design balancing reserve of a service reservoir with the following data:

Time	6 am to 10	10 am to 6	6 pm to 10	10 pm to 6
	am	pm	pm	am
Consumption				
in percentage				
of day's				
demand	35	20	40	05

Designed demand of 15MI/day is to be pumped at a uniform rate to the reservoir for all 24 hours. State the time: [8]

- i) When FSL is reached and
- ii) When LWL is reached in the reservoir
- c) With the help of neat figure explain various component of rain water harvesting system. [4]

- Q11)a) Draw the neat sketch of typical cyclone separator and label the parts.[6]
 - b) Explain fabric filter with sketch and its advantages and disadvantages.[6]
 - c) Explain different methods of odour control [6]

OR

- Q12)a) Define plume and explain with sketches different types of plume behavior. [6]
 - b) Write effects of oxides of sulphur on human health, vegetation and materials. [6]
 - c) Explain the effects of noise pollution. [6]

