Total No. of Questions: 12]	SEAT No.:
P3508	[Total No. of Pages : 3

[4858] - 106

T.E. (Civil) (Semester - II)

Hydrology & Water Resources Engineering (2008Pattern)

Time: 3 Hours] [Max. Marks: 100

Instructions to the candidates:

- 1) Answer any 3 questions from each section.
- 2) Neat diagrams must be drawn wherever necessary.
- 3) Figures to the right indicate full marks.

SECTION-I

Q1) a) Explain with neat and labelled figure weighing bucket type rainguage.

[8]

b) State various methods of measuring evaporation. Discuss the factors affecting infiltration. Explain flooding type infiltrometer. [10]

OR

- Q2) a) What is stream guaging? Explain Area-Velocity method with sketch and explain its application in water resource engineering. [10]
 - b) State different forms and types of precipitation. Explain frontal type of precipitation. [8]
- **Q3)** a) State various formulae to determine flood and explain any 2 methods.

[8]

b) Given below are the observed flow from a storm of 6 hours duration with drainage area of 300 sq. km. Assume a constant base flow of 16 cumecs. Derive and plot a 6 hours duration unit hydrograph. [8]

Time (Hr)	0	6	12	18	24	30	36	42	48	54	60	66
Flow (Cumec)	17	113.2	254.3	198	145	112.8	87.7	69.9	54.2	42.8	31.1	17

Q4) a) Explain factor affecting run off.

[8]

b) Explain with a neat sketch Synthetic Unit Hydrograph.

[8]

- **Q5)** a) Define trap efficiency of reservoir. Describe how the time required to reservoir to fill up with sediments is calculated. [8]
 - b) Explain various zones of reservoir with a neat sketch.

[8]

OR

- **Q6)** a) Explain with a neat figure how the economic height of dam is fixed. [8]
 - b) What is apportionment of total cost of reservoir? Explain various methods of the same. [8]

SECTION-II

- Q7) a) Explain crop area and volumetric methods of assessing canal revenue.And state merits and demerits.[8]
 - b) The following table gives data for crop. Calculate

[10]

- i) Delta for each crop.
- ii) Volume of water required for each crop.
- iii) Volume of water stored in reservoir.

Crop	Base period (Days)	Field Duty (ha/cumec)	And under Crop (hectare)	Remark		
Wheat	120	1800	4800	Transist losses = 15%		
Sugar cane	360	800	5600	Reservoir losses = 25%		
Cotton	200	1400	2400	Reservoir losses – 23		

OR

Q8) a) Define:

[8]

- i) Time factor,
- ii) Duty,
- iii) Paleo Irrigation,
- iv) Kor depth.

b)	Find the frequency of irrigation if [10]				
	i) Field capacity of soil = 30%.				
	ii) Permanent witting percentage = 10%.				
	iii) Mass density of soil = 1300 kg/m^3 .				
	iv) Effective depth of root zone = 800 mm.				
	v) Daily consumptive use of water = 15 mm.				
	vi) Reality available moisture = 15%.				
Q9) a)	State Dapits assumptions. Derive equation for discharge from well through confined aquifer. [8]				
b)	Explain pumping and recuperation test. What should be a diameter of well to give yield of 5 litres/sec?				
	Assume head = 3.75 m, and specific yield of sub-soil = 0.5 / hour. [8]				
	OR				
Q10) a)	Explain different types of tube wells and dug wells. Explain strainer type with a neat sketch. [8]				
b)	What is water logging? Explain causes and effect of water logging. [8]				
Q11) a)	What are major, minor & medium irrigation projects? What are advantages and disadvantages of irrigation. [8]				
b)	What is lift irrigation? Explain the design considerations of components. [8]				

OR

- What are co-operative water distribution society's state rules for equitable **Q12)** a) distribution of water to farmers. [8]
 - b) Explain in brief methods of application of water to field. [8]

