SEAT No. :

P1398 [Total No. of Pages : 4

[4858] - 160

T.E. (Electronics)

Discrete Time Signal Processing (2008 Pattern) (Semester - II)

Time: 3 Hours] [Max. Marks: 100

Instructions to the candidates:

- 1) Answer any three question from each section.
- 2) Answers to the two sections should be written in separate books.
- 3) Neat diagrams must be drawn wherever necessary.
- 4) Figures to the right indicate full marks.
- 5) Use of logarithmic tables, slide rule, Mollier charts, electronic pocket calculator and steam tables is allowed.
- 6) Assume suitable data, if necessary.

SECTION - I

Q1) a) An analog signal is given by

[6]

 $x(t) = 3 \cos 100 \pi t + 2 \sin 300 \pi t - 4 \cos 100 \pi t$

- i) What is the Nyquist rate for this signal?
- ii) Write the equation of sampled signal.
- iii) If the signal is sampled at a rate of 200 sam/sec. What is the discrete time signal obtained after sampling?
- b) What are the advantages of discrete time signal processing over analog signal processing? [6]
- c) Explain Direct form II structures for realization of LTI discrete time systems. [6]

OR

Q2) a) Discrete time systems $h_1(n) \& h_2(n)$ are connected in cascade. [6]

$$h_1(n) = \left\{ \frac{1}{2} \quad \frac{1}{4} \quad \frac{1}{2} \right\} \qquad h_2(n) = \delta(n-2)$$

Determine the response of the overall system to the input

$$x(n) = \delta(n+2) + 3\delta(n-1) - 4\delta(n-3)$$

P.T.O.

b) A difference equation of discrete time system is given below: [6]

$$y(n) - \frac{2}{5}y(n-1) + \frac{3}{7}y(n-2) = 2x(n) + \frac{2}{3}x(n-1)$$

Draw direct form I & direct form II structures.

c) Determine the impulse response of the systems described by the difference equation. [6]

$$y(n) = 0.6y(n-1) - 0.08y(n-2) + x(n)$$

- Q3) a) Compute the 4 point DFT of the following sequence $x(n) = \{1 \ 1 \ 1 \ 1\}$. [4]
 - b) Compute the circular convolution of the following sequences. [4]

$$x_1(n) = \{4 \quad 3 \quad 2 \quad 1\} \quad x_2(n) = \{1 \quad 2 \quad 1 \quad 2\}$$

- c) Explain the following properties of DFT.
 - i) Linearity
 - ii) Time shifting
 - iii) Circular convolution

OR

Q4) a) Compute the 8-point DFT of the following sequence using DIT FFT algorithm. [10]

$$x(n) = \{1 \quad 2 \quad 2 \quad 1 \quad 1 \quad 2 \quad 1 \quad 1 \}$$

b) Find IDFT of the following sequence.

$$x(k) = \{7 \quad -2 - j \quad 1 \quad -2 + j\}$$

Q5) a) State and explain the condition of causality and stability of the discrete time system.[6]

b) Compute the z-transform of

[10]

[6]

[8]

i)
$$x_r(n) = \left(\frac{1}{2}\right)^n u(n) + (3)^n u(-n-1)$$

- ii) $x_r(n) = a^{|n|}$
- iii) $x(n) = n(a)^n u(n)$

Q6) a) Compute the z-transform of

$$x(z) = \frac{1}{1 - 1.5z^{-1} + 0.5z^{-2}}$$

for i) ROC: |z| > 1

- ii) ROC: |z| < 0.5
- b) Determine the impulse response of the system.

 $1-z^{-1}$

$$H(z) = \frac{1 - z^{-1}}{1 - 0.2z^{-1} - 0.15z^{-2}}$$

c) Sketch the following sequences.

[6]

[4]

[6]

compute z - transforms

plot pole zero plots for following sequences

i)
$$x(n) = (1)^n u(n)$$

ii)
$$x(n) = (-1)^n u(n)$$

SECTION - II

Q7) a) Convert the analog filter with system function

[5]

$$H_a(s) = \frac{s + 0.1}{(s + 0.1)^2 + 9}$$

into digital IIR filter by means of Bilinear transformation. The digital filter should have resonant frequency of $w_r = \pi/4$.

- b) Explain frequency warping in Bilinear transformation. What are the advantages of Bilinear transformation over Impulse Invariance transformation? [5]
- c) Design a single pole low pass digital filter with a 3-dB bandwith of 0.2π using bilinear transformation applied to the analog filter. [8]

$$H(s) = \frac{\Omega c}{s + \Omega c}$$

where Ωc is 3-dB bandwidth of analog filter. Also compute the magnitude at $w = 0 \& w = 0.2\pi$.

OR