Total No. of Questions: 12]	SEAT No. :
P1435	[Total No. of Pages : 3

[4858] - 210

T.E. (IT) (Semester - II) DESIGNANDANALYSIS OFALGORITHMS (2008 Pattern)

Time: 3 Hours] [Max. Marks: 100

Instructions to the candidates:

- 1) Draw neat diagrams wherever necessary.
- 2) Assume suitable data, if necessary.
- 3) Figures to the right indicate full marks.

SECTION - I

- **Q1**) a) Explain O, θ and Ω notations. Give examples. [8]
 - b) Explain any two proof techniques with suitable examples. [8]

OR

- Q2) a) What is the framework for analysis of algorithms? Discuss all the components. [8]
 - b) Explain amortized analysis. [8]
- Q3) Use of divide and conquer technique for multiplication of large integers, reduces time complexity of algorithms. Two n-digit numbers require 3 multiplications of n/2 numbers. Thus M(n) = 3 M(n/2) for n > 1 and M(1) = 1. Solve this recurrence and find the time complexity for this recurrence.

OR

Q4) a) Construct Huffman tree using greedy strategy.

character	A	В	С	D	-
probability	0.35	0.1	0.2	0.2	0.15

b) Explain closest pair problem. How can it be solved using divide and conquer strategy. [8]

[8]

Q5)	a)	What is Dynamic programming? Is this the optimization technique Give reasons. What are its drawbacks? [9]			
	b)	Compare dynamic programming and divide and conquer. What are the advantages and disadvantages of both techniques. [9]			
		OR			
<i>Q6</i>)	a)	Explain knapsack problem. State its recurrence relation. What is the strategy of solving knapsack problem using Dynamic Programming paradigm? [9]			
	b)	Compare matrix generation for Warshall's algorithm and Floyd's algorithm with suitable examples. [9]			
		SECTION - II			
Q 7)	a)	Explain the following terms: [8]			
		Live nodes, expanding nodes, bounding function and solution space.			
	b)	Consider $S=\{5,10,12,13,15,18\}$ and sum of subsets=30. Find different subsets. [8]			
		OR			
<i>Q8</i>)	a)	Explain 4-queens problem using backtracking. State the constraints for placement of queens on 4x4 chessboard. [8]			
	b)	Write GraphColoring algorithm. State time complexity. [8]			
Q9)	a)	Explain the terms: [9]			
		Branch and Bound, LC, LIFO and Bounding function. How are LIFO and LC techniques different?			
	b)	Explain dynamic reduction for TSP. [9]			
		OR			
Q10)	a)	Explain FIFO Branch and bound with suitable example. [9]			
	b)	Explain the terms: state space, live node, static trees and dynamic trees. [9]			

Q11) a)	Write non-deterministic algorithm for sorting elements of an Write its complexity.	array. [8]
b)	What is a halting problem? Is this NP-Complete or NP-Hard?	[8]
	OR	
Q12) a)	Write non-deterministic algorithm for searching an element of an Write its complexity.	array. [8]
b)	Explain Cook's theorem.	[8]

