Total No. of Questions: 12]	SEAT No.:
P1431	[Total No. of Pages : 3

[4858] - 205

T.E. (IT) (Semester - I) THEORY OF COMPUTATION

(2008 Pattern)

Time: 3 Hours] [Max. Marks: 100

Instructions to the candidates :-

- 1) Solve Q.1 or Q.2, Q.3 or Q.4, Q.5 or Q.6 from the SECTION I.
- 2) Solve Q.7 or Q.8, Q.9 or Q.10, Q.11 or Q.12 from the SECTION II.
- 3) Answers to the two sections should be written in separate answer books.
- 4) Neat diagrams must be drawn wherever necessary.
- 5) Assume suitable data if necessary.

SECTION - I

- Q1) a) Design FA/FSM that read strings made up of $I = \{a, b\}$ and accept only those strings which starts with "a" and ends with "bb" [8]
 - b) Define and explain:

[8]

[2]

- i) Language
- ii) Cartesian Product
- iii) Regular Expression
- iv) Kleene Closure
- c) What is regular expression and explain with example.
- Q2) a) Design a Finite State Machine to accept set of strings containing substring "101" over input {0,1}. [8]
 - b) Give RE for following language over = $\{0, 1\}$. [8]
 - i) Language of all strings that begin with "11" and end with "01"
 - ii) Language of all strings in which occurrence of "a" is always tripled
 - iii) Language of all strings containing substring 00.
 - iv) Language of all strings not containing substring 00.
 - c) Show that (a*b*) = (a+b)* [2]

P.T.O.

Q3) a) Design a Mealy machine to compute 2's complement of a given binary number. [8]

b) Construct DFA for regular expression abb (a+b)* [8]

Q4) a) Convert the following NFA into equivalent DFA

NFA = $({p, q, r, s}, {0, 1}, \delta, p, {s})$

	0	1
p	p,q	p
q	r	r
r	S	_
S	S	S

b) Construct NFA for the following regular expression.

- i) a*b(bb)⁺
- ii) (a+b)*bab(a+b)*
- Q5) a) Show that the following grammar is ambiguous $S \rightarrow aSbS S \rightarrow bSaS S \rightarrow \epsilon$ [6]
 - b) Convert the following grammar to Chomsky Normal Form (CNF)[6] $G = (\{S\}, \{a, b\}, P, S)$

S->ABA, A->aA, A-> ϵ , B->bB, B-> ϵ

c) Obtain a grammar to generate the language $L = \{a^{2n} b^n | n > 0\}$ [4]

Q6) a) Explain Chomsky Hierarchy.

[6]

[8]

[8]

b) Consider the following grammar

[6]

S->aB, S->bA,

 $A\rightarrow a, A\rightarrow aS, A\rightarrow bAA.$

b-> b,B->bS,B->aBB

Derive the string aaabbb using

- i) Leftmost derivation
- ii) Rightmost derivation.
- c) Construct CFG for language of even length palindrome of strings of a's and b's. [4]

SECTION - II

Q 7)	a)	Show that CFLs are closed under Union, Concatenation and Kleene closure. [6]
	b)	Explain closure properties of regular languages. [6]
	c)	Let $G = (\{A0, A1\}, \{a, b\}, P, A0)$
	·	Where $P = \{A0 \rightarrow aAl, Al \rightarrow bAl, Al \rightarrow a, Al \rightarrow bA0\}$
		Convert given grammar to equivalent Left linear grammar [6]
Q 8)	a)	State and prove Pumping lemma theorem for Context-Free Language. [6]
	b)	Let $G = (\{A, A\}, \{a, b\}, P, A)$
		where $P = \{A \rightarrow aB, B \rightarrow bB \mid a \mid bA\}$
	۵)	Construct a FA equivalent to G. [6]
	c)	Construct a regular grammar G generating the regular set represented by $P = b^* a(a+b)^*$ [6]
Q9)	a)	Compare PDA with FSM and Construct PDA for S ->S + S, S->S * S, S->8 [8]
	b)	Define post machines and explain its elements. [4]
	c)	Define acceptance by PDA [4]
	,	i) By final state
		ii) By empty stack.
Q10)	a)	Show that post machine for $l = \{a^n b^n c^n\}$ and compare PDA with PM [8]
	b)	Obtain a PDA to accept the language
		$L = \{a^n b^n n > 1\} $ by a final state [8]
Q11)	a)	Write short notes on: [8]
		i) Limitation of Turing Machine
		ii) Halting Problem of Turing Machine
	b)	Design a Turing machine to compute 1's complement of a given binary number. [8]
Q12)	a)	Write a short note on universal Turing machine. [8]
~ /	b)	Design a Turing machine for concatenation of two strings over input a, b. [8]